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PREFACE

This Second Annual Status Report describes the results of work performed dur-

ing the first two years of the NASA Hot Section Technology program, "3-D

Inelastic Analysis Methods for Hot Section Components" (contract NAS3-23697).

The goal of the program is to develop computer codes which permit more accur-

ate and efficient structural analyses of gas turbine blades, vanes, and com-

buster liners. The program is being conducted under the direction of Dr. C. C.
Chamis of the NASA-Lewis Research Center. Prime contractor activities at

United Technologies Corporation are managed by Dr. E. S. Todd. Subcontractor

efforts at the United Technologies Research Center, MARC Analysis Research

Corporation, and the State University of New York at Buffalo are led by Dr. B.

N. Cassenti, Dr. J. C. Nagtegaal, and Dr. P. K. Banerjee, respectively.
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SECTIONl.O

INTRODUCTION

Aircraft powerplant fuel consumption and expenditures for repair/replacement

of worn or damagedparts make up a significant portion of commercial avia-

tion's direct operating costs. For modern gas turbines, both factors depend

heavily on the degree to which elevated flowpath temperatures are sustained in

the hot section modules of the engine. Higher temperatures reduce fuel con-

sumption by raising the basic efficiency of the gas generator thermodynamic

cycle. At the sametime, these elevated temperatures work to degrade the dura-

bility of structural components (combustor liners, turbine blades and vanes,
airseals, etc.) that must function adjacent to or within the hot gaspath it-

self, leading in turn to larger maintenance/material costs. Pursuit of the

best compromise between performance and durability presents a challenge that
will continue to tax the ingenuity of advancedgas turbine design analysts for

years to come.

Hot section durability problems appear in a variety of forms, ranging from

oxidation/corrosion, erosion, and distortion (creep deformations) to occur-

rence of fatigue cracking. Even modest changes in shape, from erosion or dis-

tortion of airfoils for example, can lead to measurable performance deteriora-

tion that must be accurately predicted during propulsion system design to in-

sure that long-term efficiency guarantees can be met. Larger distortions in-

troduce serious problems such as hot spots and profile shifts resulting from

diversion of cooling air, high vibratory stresses associated with loose tur-

bine blade shrouds, difficult disassembly/reassembly of mating parts at over-

haul, etc. These problems must be considered and efforts made to eliminate

their effects during the engine design/development process. Initiation and

propagation of fatigue cracks represents a direct threat to component struc-

tural integrity and must be thoroughly understood and accurately predicted to

insure continued safe and efficient engine operation.



Accurate prediction of component fatigue lives is strongly dependent on the

success with which inelastic stress/strain states in the vicinity of holes,

fillets, welds, and other discontinuities can be calculated. Stress/strain

computations for hot section components are made particularly difficult by two

factors - the high degree of geometrical irregularity which accompanies so-

phisticated cooling schemes, and complex nonlinear material behavior associ-

ated with high temperature creep/plasticity effects. Since cooling air ex-

traction reduces engine cycle efficiency, concerted efforts are made to mini-

mize its use with the result that elaborate internal passages and surface

ports are employed to selectively bathe local regions (airfoil leading edges,

louver liner lips, etc.) for which the high temperature environment is most

severe. These cooling features frequently interrupt load paths and introduce

complex temperature gradients to the extent that the basic assumptions of one-

and two-dimensional stress analysis procedures are seriously compromised and

the use of three-dimensional techniques becomes mandatory. Even in the pres-

ence of cooling, component temperature and stress levels remain high relative

to the material's melting point and yield strength values. The combinations of

centrifugal, aerodynamic, thermal, and other mechanical loadings that typical-

ly occur in flight operation then serve to drive the underlying material re-

sponse beyond accepted limits for linear elastic behavior and into the regime

characterized by inelastic, time-dependent structural deformations. Thus, an

ability to account for both complexities, three-dimensional and inelastic

effects, becomes essential to the design of durable hot section components.

General purpose finite element computer codes containing a variety of three-

dimensional (brick) elements and inelastic material models have been available

for more than a decade. Incorporation of such codes into the hot section de-

sign process has been severely limited by high costs associated with the ex-

tensive labor/computer/time resources required to obtain reasonably detailed

results. Geometric modeling systems and automated input/output data processing

packages have received first attention from software developers in recent

years and will soon mature to the point that previous over-riding manpower

concerns will be alleviated. Prohibitive amounts of Central Processing Unit

(CPU) time are still required for execution of even modest-size three-dimen-

sional inelastic stress analyses, however, and is chief among the obstacles

2



remaining to be remedied. With today's computers and solution algorithms, mod-

_1 e ,.I,-.t..-_.=k^A k.. _ h,=_A_^,,I .I.'.--I ...... _. .J ....... _ _ .... .=__ lyI _ U_m_Db I I U¢U gJ a 1 i_;ff ilf¢lllUl ¢u u i )p i Qt.¢IIII_II (. Ul_y|-_l:_) g I I r'f_Uglll CUIIIIIUn con-

sun_ one to three hours of mainframe CPU time during simulation of a single

thermomechanical loading cycle. A sequence of many such cycles may, of course,

be needed to reach the stabilized conditions of interest. Since accurate

idealizations of components with only a few geometrical discontinuities can

easily contain several thousand degrees of freedom, inelastic analysis of hot

section hardware with existing codes falls outside the realm of practicality.

The Inelastic Methods Program addresses the need to develop more efficient and

accurate three-dimensional inelastic structural analysis procedures for gas

turbine hot section components. A series of new, increasingly rigorous, stand-

alone computer codes is being created for the comprehensive numerical analysis

of combustor liners, turbine blades and vanes. Theoretical foundations for the

codes feature mechanics of materials models, special finite element models,

and boundary element models. Heavy attention will be given to evolution of

novel modeling methods that permit non-burdensome yet accurate representations

of geometrical discontinuities such as cooling holes and coating cracks. A

selection of constitutive relations has been provided for economical or so-

phisticated description of inelastic material behavior as desired. Finally,

advantages which accrue from application of the improved codes to actual com-

ponents will be demonstrated by execution of benchmark analyses for which

experimental data exist.

3



SECTION 2.0

SUMMARY

The 3-D Inelastic Analysis Methods program is divided into two 24-month seg-

ments: a base program, and an option program to be exercised at the discretion

of the Government. During the base program, a series of new computer codes em-

bodying a progression of mathematical models (mechanics of materials, special

finite element, boundary element) is being developed for the streamlined

analysis of combustor liners, turbine blades and turbine vanes. These models

will address the effects of high temperatures and thermal/mechanical loadings

on the local (stress/strain) and global (dynamics, buckling) structural behav-

ior of the three selected components.

The first year (Task I) of the base program dealt with "linear" theory in the

sense that stresses/strains and temperatures in generic modeling regions are

linear functions of the spatial coordinates, and solution increments for load,

temperature and/or time are extrapolated linearly from previous information.

Three linear formulation computer codes, hereafter referred to as MOMM (Me-

chanics of Materials Model), MHDST (MARC-HOST), and BEST (Boundary Element

Stress Technology), have been created and are described in more detail in the

First Annual Status Report (NASA CR-174700).

The second half of the base program (Task II), as well as the option program

(Tasks IV and V), will extend the models to include higher-order representa-

tions of deformations and loads in space and time and deal more effectively

with collections of discontinuities such as cooling holes and coating cracks.

Work on Task II (polynomial theory) has been completed, and the results are

given in the third section of this Second Annual Status Report.

2.1 CONSTITUTIVE MODELS

Three increasingly rigorous constitutive relationships are employed by MOMM,

MHOST, and BEST to account for nonlinear material behavior (creep/plasticity

effects) in the elevated temperature regime. The simplified model assumes a

bilinear approximation of stress-strain response and generally glosses over

4



the complications associated with strain rate effects, etc. (Section 3.i.i).

The state-of-the-art model partitions time-independent (plasticity) and time-

dependent (creep) phenomena in the conventional way, invoking the Mises yield

criterion and standard (isotropic, kinematic, combined) hardening rules for

the former and a power law for the latter (Section 3.1.2). Walker's viscoplas-

tic theory, which accounts for the interaction between creep and plasticity

that occurs under cyclic loading conditions, has been adopted as the advanced

constitutive model (Section 3.1.3).

2.2 MECHANICS OF MATERIALS MODEL

In essence, the Mechanics of Materials Model (MOMM) is a stiffness method fi-

nite element code that utilizes one-, two- and three-dimensional arrays of

beam elements to characterize hot section component behavior. Limitations of

such beam model representations are recognized, of course, but are fully ac-

ceptable in view of the benefits of having a fast, easy to use, computation-

ally efficient tool available for application during the early phases of com-

ponent design. The full complement of structural analysis types (static, buck-

ling, vibration, dynamics) is provided by MOMM, in conjunction with the three

constitutive models mentioned above. Capabilities of the code have been tested

for a variety of relatively simple problem discretizations (examples are pro-

vided in Section 3.2.2).

2.3 SPECIAL FINITE ELEMENT MODEL

The MHOST (MARC-HOST) code employs both shell and solid (brick) elements in a

mixed method framework to provide comprehensive capabilities for investigating

local (stress/strain) and global (vibration, buckling) behavior of hot section

components. Development of the code has taken full advantage of the wealth of

technical expertise accumulated at the MARC Corporation over the last decade

in support of their own commercially available software packages to create

new/improved algorithms (Section 3.3.4) that promise to significantly reduce

CPU (central processing unit) time requirements for three-dimensional analy-

ses. Second generation (Task II) MHOST code is operational and has been tested

with a variety of academic as well as engine-related configurations (Section

3.3.6).



2.4 ADVANCEDFORMULATION(BOUNDARYELEMENT)MODEL

Development of the new BEST (B__oundaryE_lement Stress Technology) code consti-

tutes a very important accomplishment of the Task II effort. The difficult

challenge of extending the basic theory and algorithms to deal effectively

with inelastic and dynamic effects in three-space was successfully met by com-

bining the special skills and efforts of the research and programming teams at

SUNY-B and P&W. As with MOMM and MHOST, the second version of BEST is opera-

tional and has been exercised with a number of small and large test cases

(Section 3.4.5). While MHOST and BEST are currently viewed as mutually comple-

mentary, they are also competitors; and overall performance on large inelastic

models will be watched with high interest as the codes continue to mature.



SECTION3.0

TECHNICAL PROGRESS

3.1 CONSTITUTIVE MODELS

Three material models are available for use with the mechanics of materials,

special finite element, and boundary element models: 1) a simplified material

model, 2) a state-of-the-art material model, and 3) an advanced material mod-

el. The simplified model uses secant moduli and assumes a bilinear stress-

strain response which is currently neither strain-rate nor temperature depen-

dent. Later versions of the simplified material model may include provisions

for both temperature and strain-rate dependence. The state-of-the-art material

model is a standard elastic-plastic-creep model (Reference 1). The advanced

model is a modified form of Walker's viscoplastic material model (References 2

and 3). The following sections provide a detailed discussion of each of these

models.

3.1.1 Simplified Secant Elastic Model

In the simplified elastic model, stress-strain curves for various strain rates

are the basic input material properties. Tension response is assumed to be the

same as compression response. The initial response is represented by an elas-

tic material with modulus, Eo, and Poisson's ratio, vo. At the conclusion

of the calculation for the response, an equivalent strain is predicted. At

this strain, two equivalent stresses can be considered: 1) the calculated

stress, and 2) the stress from the input stress-strain curves at the predicted

strain. If the two stresses are sufficiently close in value, then the calcula-

tions can be terminated. If the two stresses are not sufficiently close, then

the new modulus is taken to be the stress from the stress-strain curves divid-

ed by the strain, and the calculations are repeated.

?



This concept must now be expanded to multidimensional stress states. For this

purpose, consider an elastic material, then:

1 + v v

_ij = --_aij - _ °kk aij (3.1-1)

where:

_ij is the mechanical strain tensor (i.e., total strain minus thermal strain),

oij is the stress, and

aij is the Kronecker delta.

The stress and strain can be partitioned into deviatoric and volumetric parts,

cij = eij + I/3 ekk _ij (3.1-2)

oij = Sij + 1/30kk 6ij (3.1-3)

The volumetric components, from equation (3.1-1) are related by:

1 - 2v 1

_kk = _ akk = 31T _kk

where K is the bulk modulus.

The deviatoric parts can be shown to be related by:

1+v

eij = --_ Sij

Let the equivalent stress be represented by:

; : : ,/3/2sijsij

where J2 is the second invariant of the deviatoric stress tensor.

Then, from equations (3.1-5) and (3.1-6):

E _/3/2 ei= _ j eij

Similarly, the equivalent strain can be taken to be:

: 3V_-2:_/3/2 eij eij

where J2 is the second invariant of the deviatoric strain tensor.

(3.1-4)

(3.1-5)

(3.1-6)

(3.1-7)

(3.1-8)



Equation (3.1-7) now becomes:

(3.1-9)

Since only the ratio _/T will be used to represent the material response, an

additional assumption is needed to obtain the second elastic constant. For

this purpose, assume the bulk modulus is constant, and given by equation

(3.1-4):

E Eo 2 (1 + vo) GO

K = 3 (1 - 2v) = 3 (1 - 2vO) = 3 (1 - 2vo)
(3.1-10)

where Go, Eo, vo are the moduli and Poisson's ratio at the origin (i.e.,

T=T=O). The current shear modulus is known from the slope _/T. Then from equa-

tion (3.1-9)

2 (1 + v) G 2 (i + vO) Go

3 (1 - 2v) = 3 (1 - 2vO)

Solving equation (3.1-11) for:

3 (G/Go) 1

v=½ I .....

2 (1 + vO) + G

1 - 2vo -_o

(3.1-11)

(3.1-12)

Figure 3.1-1 presents the variation in Poisson's ratio with modulus.

Young's modulus can be determined from:

The

E = 2 (1 + v) G = (1 + v) _/;

As an example, consider a uniaxial stress state:

I o i=j=l I c i=j=l°ij = o i/I j_l and ¢ij = -re i=j=2,3
_ , o i#j

Then:

(3.1-13)

(3.1-14)

= o and _ : (I + v) c = c11 - c22
(3.1-15)
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Figure 3.1-1 Variation in Nu

The _, T curve is now the input stress-strain curve.

To illustrate the convergence of the iterative procedure, consider three par-

allel bars supporting an equivalent total load. The bars are assumed to be

elastic-plastic. Each has a Young's modulus of 10 x 106 psi and a hardening

slope of 0.5 x 106 psi. The yield stresses are different. The central bar

will be assumed to have a yield stress of 20 ksi while the two outer bars have

a yield stress of 10 ksi. The area of each bar is 1/3 in2, making a total

area of 1.0 in2. Figure 3.1-2 illustrates that convergence has occurred in

six iterations for a total load of 30,000 Ib and that each of the bars has

yi elded.

The material constants for the simplified model are input to the computer code

through data input cards.
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Figure 3.1-2 Three Bar Convergence Using Simplified Model

Current State-of-the-Art Model

The current state-of-the-art model has been taken to be the classical elastic-

plastic-creep model that is available in the MARC code, and described in Ref-

erence 1. The creep model is essentially a steady state power law (stress)

model. The plasticity model includes isotropic, kinematic, and a combined

hardening law. Both the creep and plasticity models assume no permanent volu-

metric deformations. For the mechanics of materials computer code, the materi-

al properties for the state-of-the-art constitutive model are included in data

statements in subroutine SOACON.

Plastic Iteration Procedure

Consider the case of a small strain elastic-plastic response of a typical

structure. Sufficiently large applied loads will result in permanent or plas-

tic deformation. A procedure for calculating the response of the structure un-

dergoing plastic deformation is required.
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To evaluate the response of the structure, the loading history is divided into

a number of incrementally applied loading steps. Each of these load increments

can then be applied sequentially to the structure. An iterative scheme is then

required to calculate the response of the structure to each individual load

increment.

At the beginning of a new load increment it may be assumed that the strain

will change in a manner analogous to the previous increment. As an initial

estimate all of the strain change is then assumed to be elastic. The change in

the stresses can then be calculated using Hooke's Law or:

where:

e

aoij = LijklACkl

is the incremental stress vector,

is the incremental total strain vector, and

(3.1-16)

e

Li_.kijis the matrix of elastic constants.

If the resulting total stress is within the yield surface, the matrix of mate-

rial constants, Lijkl is simply given by:

= Le
Lijkl ijkl

(3.1-17)

If the resulting total stress is outside the yield surface, weighted material

constants and stiffness matrices will have to be calculated. It should be

noted at this point that if a load increment is exceedingly large and if there

is a sudden change in the type of loading, care must be taken in order to

iterate to the correct solution.

12



if the resulting total stress is outside the yield surface, the fraction of

the stress increment that remains elastic must be determined. This corresponds

to A¢_1 in Figure 3.1-3. If the yield surface in stress space is considered
ij

to be given by:

then the appropriate m in:

f(oij) : O,

i-i + maoij) = 0 (3.1-18)f(oij

i-1

may be determined where aij is the stress tensor from the previous increment.

The mean material matrix is calculated from:

where Le.-P.
13KI

= mLe... * (l-m) e-p
Lijkl 13Kl Lijkl

is the tensor relating 6ij and _kl"

(3.1-19)

Once the tensor Lijkl has been determined, standard solutions can be applied

to find the incremental changes in the displacements, strains and loads. For

example, if the strains are given by:

=[B] taut (3.1-20)

where {Au} is the vector of incremental nodal displacements, and [B] is the

matrix relating the vector of element strains {Ac} to the nodal displacements,

the stiffness matrix can be found from:

[K] = _ [B] t [D] [S] dV
V

(3.1-21)

where [D] is the matrix representation of the tensor LijkJ. The strain-dis-

placement matrix [B] depends on the formulation of the element.

13



The incremental nodal displacements and strains can be evaluated by solving

for Au in:

[K1l ul= * I GI (3.1-22)

and then applying equation (3.1-20).

In the mechanics of materials computer code the stiffness matrix K is held

constant, and changes in the stiffness matrix are included in AG.

Oy

O
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uJ
cr
F-
c/)

/%Eel 2

I
II I I
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II I I
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I I I I
LJ __J_J

I I _EpI ] I_ -_ A £ el

__ I-AEeIpl,- __]AEell _E

=A Eel 1+ A Eel2

STRAIN, E

Figure 3.1.3 Elastic-Plastic Strain Decompositions for Bilinear Stress-Strain

Law
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The term aP in equation (3.1-22) is the applied incremental load. The term AG

is defined as the pseudo-load correction to the stiffness matrix due to in-

elastic strains which is added to equation (3.1-22). The aG vector calculated

from creep strain, for example, is shown in equation (3.1-34).

One iteration cycle is completed each time the stiffness matrix is formed and

the resulting equations solved. At the end of each cycle the resulting solu-

tion must be tested for convergence. This is accomplished, by considering the

change in energy,

EN _ EN-1 EN _ EN-1

r - EN - I/2 (EN + EN'I) (3.1-23)

where EN-1 is the change in energy summed over a11 elements on the previous

cycle and EN is the energy including the present cycle.

An accurate solution will usually result if r is maintained less than 0.1 for

elastic-plastic problems.

If the solution has satisfied the convergence, the stresses and strains can be

updated and a new load increment added. If the solution has not converged,

then a new guess for the strains, based on the latest cycle, must be input and

the calculation procedure repeated. When the solution has not converged after

a given number of cycles, the program should exit from the load incrementing

loop.

Figure 3.1-4 is a flow chart i11ustrating the small strain elastic-plastic it-

eration procedure.

For isotropic materials the moduli in equation (3.1-19) are given by:

Le E _..a. + v 1 (3.1-24)
ijkl - i + v ! IK Jl i--2-'_'_vaij akl
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and

L.e-p. E
1,1KI = _ik_jl + v _ij_kl

where E

v

_ij

° 0

is Young's modulus

is Poisson's ratio

is the Kronecker delta

= HEP + Oy

3/2 (Sij _ flij)

I 2 l+v+_J ---_H +

.P

"'Jhi. = G Eij

.P
are the plastic strain rates

¢ij

,P /_ .P .P

c V _/3= eij eij

G is the kinematic hardening slope

H is the isotropic hardening slope

oy is the initial yield stress, and

Sij = oij - i/3 okk_ij is the deviatoric stress.

(Skl - nkl) Io]oo'
(3.1-25)

(3.1-26)

(3.1-27)

(3.1-28)

The strain rate has been decomposed into elastic (including thermal), plastic

and creep components, or:

= _e + _P + _c (3.1-29)

The plastic yield surface was assumed to satisfy an equivalent Mises yield

surface given by:

1/2 (Sij - nij) (Sij - nij) = 1/3 oo (3.1-30)

The method presented in Reference 4 is used to calculate the elastic-plastic

moduli.
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Figure 3.1-4 Elastic-Pl astic Iteration Procedure
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Time Effects Iteration Procedure

The creep strain rate will depend in general on the stress, the accumulated

creep strain, the temperature and time. To illustrate the incrementing proce-

dure, assume that the creep strain rate is normal to the Mises yield surface

in stress space, then the creep strain rate is given by:

r
ciJ = _/3/2 Smn Smn

(3.1-31)

For a specific time increment the incremental creep strains were approximated

by:

a¢c; .cr= ¢ij At.

The incremental displacements are:

where

AG = _[B] T [El {A_ c } dV

(3.1-32)

(3.1-33)

(3.1-34)

is the pseudo-creep load, IAcc} is the vector of element creep strain, and

[E] is the elasticity matrix. The strain increment can be calculated from

equation (3.1-20) and the strains, creep strains, stresses and displacements

can be updated.

A convergence test on the stresses should be performed. If the algorithm has

not converged, a shorter time step should be used and the calculations re-

peated. If the criterion has been satisfied, then the time step can be in-

creased. Figure 3.1-5 is a flow chart illustrating the small strain creep it-

eration procedure.
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3.1.3 Advanced Viscoplastic Model

The viscoplastic model described in References 2 and 3 has been selected as

the advanced constitutive model. Reference 2 describes the basic theory; while

Reference 3 describes modifications to the form of the basic theory, and modi-

fications to the material parameters for Hastelloy X. The modifications pro-

vide more accuracy at relatively low temperatures.

For uniaxial loading the viscoplastic material model (Figure 3.1-6) reduces to:

[ ]c = la-nl nK sgn(a-_) + (a -_) z(l - k) <a_>
a== - ka Z

(3.1-35)

= n2c - n3 Icl (3.1-36)

o
C = c-IZ"

(3.1-37)

where C is the inelastic strain,

is the back stress,

o is the stress,

is the strain, and

k, %, n, K, n2, n3 and E are material constants.

The absolute value and unit ramp functions are represented by:

and

-: x<OI xl = x>O

0 x<O<X> = X x>O

(3.1-38)

(3.1-39)
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The inelastic strain in equation (3.1-35) consists of two components: 1) a

time dependent power law creep component, containing the material constants n

and k, and 2) a time independent plastic component, containing the material

constants a_ and k. The parameter oW becomes equivalent to the yield stress

as: 1) k, in equation (3.1-35), approaches unity, and 2) the back stress, _,

approaches zero. The back stress is a key variable in many viscoplastic ma-

terial models. Its evolution is given by equation (3.1-36). Equation (3.1-37)

represents the inelastic strain as the difference between the total strain and

the elastic strain.

_Jn! 0 /G_1_i : (n,+nz)(_ii.cii _ e -(nii-nil-n, cln|
a clnz • N..

nz cJe '!

K "K,-K z e -nTm :_

ci i : ( 8i i }'( Wb,* Z_ • ij - _';i - 31i( 3), + _/_} oO I/2_

R= ciic;i ,

s,i ' °'; i - _ 8;i eww "

'J;: f(f,,i -n,i)('_'ii-"q)

o

tlaterial cons_nt;s X,_.il,n,m.n0,nz.n3on4.n_.n_,nt. K0,Kz,k,o'G) depend on temperature

Figure 3.1-6 Modified Walker's Theory
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Subroutine HYPELA in the mechanics of materials computer code integrates

Walker's viscoplastic equations and calls subroutine HYPCON to evaluate the

material parameters. HYPCON contains the latest estimates for the parameters

in the modified Walker's theory. Each load increment in the analysis is divid-

ed into NSPLIT subincrements. The integration of the constitutive equations is

performed by using forward differences with a step size determined by dividing

the load increment by NSPLIT. Subroutine HYPELA performs the integration in

two ways: 1) a fixed step size, or 2) a variable step size. In the fixed step

size, forward difference NSPLIT is the same for all load increments and sub-

increments.

In the variable step size, forward difference NSPLIT is determined by the mag-

nitude of the change in a strain measure for every subincrement. The change in

the strain measure is defined as:

where

3V_2 (3.1-40)
E = AR +--_-_---

AR =  2/3ACijACij (3.1-41)

aJ_ = 3/2 ASij aSij and
(3.1-42)

the quantity AT is calculated and is stored as variable ERRORO. There are

three possible ways to determine NSPLIT. The method depends on the size of

ERRORO. If

ERROR2 < ERRORO < ERROR1, (3.1-43)

then NSPLIT remains the same for the next subincrement (ERROR1 and ERROR2 are

user-specified in HYPELA). If

ERRORO < ERROR2, (3.1-44)
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_,,¢,, ,,or--, is u,v,u_u ,,, _wu ror one next subincrement and rounded (up) to

the nearest integer. If

ERRORO > ERROR1, (3.1-45)

then NSPLIT is doubled and the step is recomputed. The value of NSPLIT at the

end of the increment is stored in the state variable TEMP(16). The initial

value of NSPLIT is user-specified in HYPELA. The maximum value of NSPLIT is

specified by MXSPLT. If NSPLIT exceeds MSXPLT, the message:

"UNABLE TO REDUCE ERROR IN LESS THAN MXSPLT SUBINCREMENTS"

is written where the value of MXSPLT is inserted in the WRITE statement. After

this, the integration is performed using a constant step size.
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3.1.4 List of Symbols

Ltst of Symbol s
Referenced Within Section 3.1

,Symbol

cij

aij

v

E

eij

sij

K

J2

J2

o

G

Lijkl

I u}

[B]

[K]

Description

Strain

Stress

Kronecker delta

Poisson's ratio

Young's modulus

Deviatoric strain

Deviatoric stress

Bulk modulus

Second invariant of the deviatoric

stress tensor

Second invariant of the deviatoric

strain tensor

Equivalent stress

Equivalent strain

Shear modulus

Matrix of material constants

Incremental nodal displacements

Incremental stress

Strain-displacement matrix

Stiffness matrix

8

8

8

8

8

8

8

8

8

8

8

9

12

13

13

13

13
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Li st of Sy_oi s
Referenced Within Section 3.1

Symbol

t G}
EN

r

[E]

g

H

C

@

X. ,. _. n.
m, nl, n2,

n3, n4, n5,
n6, n7, K1,
K2, k, o_

Description

Incremental applied load vector

Incremental pseudo-load vector

Energy in Nth cycle

Convergence parameter

Elasticity matrix

Kinematic hardening slope

Isotropic hardening slope

Back stress

Inelastic strain

Material constants

Page

14

14

15

15

18

16

16

20

20

20
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3.2.1 Computer Program: Formulation/Description

The three-dimensional nonlinear mechanics of materials finite element computer

program utilizes an intersecting network of beams to model a structural com-

ponent. The program calculates the total strain as a linear function of posi-

tion in cross section and along the length of the beam. Three material models

are included in the code: the simplified material model, Walker's viscoplastic

material model, and the state-of-the-art material model. Static and transient

analyses can be performed with applied loads, thermal loads, and enforced dis-

placements. Frequencies and mode shapes using either initial or tangent stiff-

ness is calculated; and buckling analysis is included in the static problem

using initial or tangent stiffness. The program flow is summarized in Figure

3.2-1.

Input parameters to the computer code consist of information defining the

model itself and information describing the method of solution desired. The

model is defined by beams which are connected at grid points. The element co-

ordinate system of a given beam is defined by an orientation grid point or

vector. The geometry of a beam is rectangular in cross section, with the di-

mensions of the cross section along the element coordinate axes specified. The

material properties are specified for each beam, including Young's modulus,

Poisson's ratio, mass density, coefficient of expansion, and yield stress. The

initial temperature of the beam network is input, and the time at initial con-

ditions is set to zero. A hardening slope for use with the simplified material

model is entered, with a zero slope indicating perfectly-plastic behavior.

Boundary conditions are specified by indicating at each node, a constrained or

nonconstrained condition for the six degrees of freedom.

Input associated with the selection of the method of solution include the pa-

rameters that indicate:

I. the choice of constitutive model to be used,

2. the choice of a static or transient analysis,
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e the choice of intttal or tangent stiffness in solvtng for the fre-

quencies and mode shapes, and

. the choice of including buckling analysis with either Inltlal or tan-

gent stiffness.

STATIC ANALYSTS

(

C START

READ ALL INFORMATION PERTAINING TO I
THREE-DIMENSIONAL NETWORK OF BEAMS

+
i READ ALL INFORMATION PERTAINING TO

METHOD OF SOLUTION

+
I COMPUTE GLOBAL STRUCTURE STIFFNESS IAND MASS MATRICES

+
APPLY BOUNDARY CONDITIONS TO

STIFFNESS MATRIX

i

INVERT STIFFNESS MATRIX 1

I I TRANSIENTANALYSIS

TANGENT STIFFNESS STIFFNESS

C STOP

STOP

Figure 3.2-1 3-D Inelastic Mechanics of Materials Computer Program Flow Chart
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Th= ,,u,m,u=, u, ,,,_=yra_,u,, pum.1._ Ill r_aL;rl Ulr'_;l. lUll Jn each beam is user-speci-

fied; stresses and strains are calculated at each integration point, and the

user specifies up to 100 points along each element coordinate axis direction

in each beam. The convergence value, defining the a11owable energy change be-

tween two consecutive iterations in the static analysis or a11owable range in

internal energy for the adaptive time step calculation in the transient analy-

sis, is entered by the user. The number and type of loading increments are

also specified.

The stiffness and mass matrices for each beam in the element coordinate system

are computed and transformed to the global coordinate system. The stiffness

and mass matrices are then assembled to form the global mass and stiffness ma-

trices. The boundary conditions are applied to the stiffness matrix, and the

matrix is then inverted. Any change in the stiffness due to nonlinear effects

will be accounted for in the pseudo-load vector; therefore, the stiffness ma-

trix is only inverted once.

Depending on user-input, the program now is directed to the appropriate branch

of the program: static or transient analysis. For static analysis, the loading

increment is read from the data input, including forces and moments or en-

forced displacements, specified at each degree of freedom of the structure.

The temperature increment is al so entered. An initial incremental displacement

vector is set to zero and strain, stress and pseudo-load vectors are calcu-

lated from the incremental displacement vector using the mechanics of materi-

als model selected by the user. The pseudo-load vector accounts for the

effects of nonlinearity and allows the use of the original stiffness matrix

throughout the calculations. The equations governing the system are as follows:

[K] I u}= I P}÷I G} (3.2-1)

where [K] = elastic stiffness matrix,

lau} = incremental displacement vector,

IAP} = incremental applied load vector, and

IAG} = pseudo-load vector, due to inelastic strains.
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{AGI = J'EB] T[E] {Ac} dV (3.2-2)

where [B] = strain-displacement matrix,

[E] = elasticity matrix, and

(A¢} = inelastic strains.

Equation (3.2-1) is solved for the incremental displacement vector, au, which

is substituted for the initial incremental displacement vector and used in the

second iteration, continuing until the change in energy in two consecutive

iterations is less than the convergence value input by the user. When conver-

gence occurs, the incremental loading, displacements, strains and stresses for

that loading increment are printed; the total load, displacement, strain and

stress vectors, as well as temperature, are then updated. Each loading incre-

ment is read in and executed similarly, and the values of stress, strain and

displacement for the total loading are calculated and printed upon conclusion

of the last increment.

The transient analysis is based on a simple Euler integration and includes a

self-adaptive time step scheme. Damping is not included directly in the tran-

sient analysis but is present in the viscoplastic material models. The loading

for each increment is the total load at that given time, which is entered into

the program by a user-supplied subroutine. The temperature increment and time

step are also entered. As in the static branch, the initial displacement vec-

tor is set to zero and the strains, stresses and pseudo-load vector are calcu-

lated using the designated mechanics of material model. An Euler integration

is then used to calculate current displacements at the end of the present time

step. The governing equations are as follows:

{A}= I F}-ZK] o}

IAV} : [M] "I IA} * DT

l Ull= (Iv}+1/2 DT

(3.2-3)

(3.2-4)

(3.2-S)
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where iA} : acceleration vector,

tAF) = applied and pseudo-loads,

[K] = elastic stiffness matrix,

taUo) = displacement vector at beginning of time step,

IAV} = change-in-velocity vector,

[M] = mass matrix,

DT = time step,

IAUI} = displacement vector at end of time step, and

IV} = velocity vector.

A measure of the work done and the change in internal energy of the system

during the time step is computed, and the time step is adapted accordingly. If

the time step is accepted, the current displacements, strains and stresses are

printed, and the current displacements are inserted for the initial displace-

ments in the following time step. If the time step is unacceptable according

to the adaptive scheme, the time step is changed, the load is recalculated,

and the displacements are reset to the initial value at the beginning of that

time step. The analysis continues until the user-designated number of incre-

ments are completed.

Following the static or transient analysis, the user has a choice between

calculating the lowest frequency and mode shape or all frequencies and mode

shapes. The method of solution for the calculation of the lowest frequency and

mode shape is the inverse power method, which is represented by the following

expression:

where

([K] -1 [M] - _[I]) IXi+l} = Ixi}

[K] = stiffness matrix,

[M] = mass matrix,

[I] = identity matrix,

= eigenvalue, and

Ix} = eigenvector.

(3.2-6)

The method of solution in the calculation of all frequencies and mode shapes

for a given problem is the Jacobi method, which is based on simple similarity

transformations.
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The procedure for determining the coefficients of the inverse stiffness matrix

is one that can represent the original stiffness of the structure or the cur-

rent stiffness including nonlinear effects. A small load is placed at one of

the nonconstrained degrees of freedom of the structure, and the displacements

are computed using the specified constitutive model. The coefficients of the

appropriate row of the inverse stiffness matrix are calculated by dividing the

calculated displacements by the applied force. This procedure is continued for

each nonconstrained degree of freedom until an inverse stiffness matrix, with

dimensions equal to the number of nonconstrained degrees of freedom of the

structure, is formed. If the frequency is to be calculated using the initial

stiffness of the structure, all variables used in the static or transient

analysis are set to the original values. If the tangent stiffness is re-

quested, all variables retain the current values for use in the frequency cal-

culation. Only the initial stiffness option is available for use in a tran-

sient analysis since current stiffness cannot be readily calculated.

Buckling analysis can be executed in a static problem. The buckling analysis

is based on a two step process similar to that in the NASTRAN finite element

code. In the first step, the beam loads are determined. In the second step, a

first order large displacement correction, proportional to the loads, is in-

cluded in the stiffness matrix. Buckling occurs when the determinant of the

new matrix vanishes. In the determination of the stiffness matrix used in the

buckling calculation, the stiffness coefficients are calculated in the same

fashion as was described in the frequency calculation, with the user choosing

the initial or tangent stiffness. The beam loads are calculated using the

initial stiffness matrix and then adding the pseudo-load vector. The actual

buckling calculations are accomplished using the inverse power method to find

the critical buckling factor and the buckled shape.

Applied loads are entered by specifying the number of loading increments, the

number of nodes with concentrated loads, and the number of beams with distrib-

uted loads. Concentrated loads are input by defining the values of the six

components of the loading at that node. Distributed loads are calculated using

a consistent load formulation. The user inputs the six components of the load
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at both end A and end B of bhe beam, and the distributed load is defined as

linear between the two ends. k consistent load formulation is then used to

calculate the nodal force vector for the beam, which is inserted into the

appropriate section of the global force vector. Enforced displacements can be

entered in the same way as concentrated loads; however, the corresponding

boundary conditions must be constrained.

Axial and transverse holes can be added to any beam. All holes are rectangular

and the centerline of a hole must coincide with the centerline of the beam

cross section, i.e., no off-center holes. Axial holes are input so that the

wall thickness of the beam is constant. A section containing a hole is modeled

as a beam with a constant cross section, and the values of cross sectional

area, moments of inertia, and torsional stiffness are calculated and used to

form the beam stiffness matrix in the same way as for a solid rectangular

cross section. Calculations at integration points for determining the psuedo-

load vector, strains, and stresses are bypassed if that integration point lies

in a hole.

Multipoint constraint equations can be supplied by the user. Each equation

consists of a dependent degree of freedom defined in terms of the independent

degrees of freedom. The equation is in the form:

where

{urn} = [Gm] {un}

lUm} = set of dependent degrees of freedom

fun} = set of independent degrees of freedom

[Gm] = multipoint constraint matrix.

(3.2-7)

The load-stiffness relationship can now be partitioned as follows:

I IlulInl
Knm Kmn Um Pm

(3.2-8)
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Writing equations (3.2-7) and (3.2-8) together and eliminating u gives:

- + T + GT Kmm Gm] fUn} I P } + [GmT] IPm}[Knn + Knm Gm GT Knm = n

or

[Knn] tUn} = lPnI

(3.2-9)

(3.2-10)

- + T + Kmm Gmwhere Knn = Knn + Knm Gm GmT Knm GmT

Pn = Pn + GmT Pm

Cracks can be added to the structure. The user specifies the location and

crack depth, and the computer code uses the elastic line spring model to de-

termine the effect of the crack on the stiffness of the structure. The equa-

tion defining the line spring model is below:

cI IPllP121IN1l ec = P21 P22 M

where 6c = displacement due to crack

ec = rotation due to crack

N = axial force in crack area

M = bending moment in crack area

P = crack flexibility matrix.

(3.2-11)

The matrix [P] is determined from stress intensity factor calibrations of a

plane-strain single edge notched specimen using energy-compliance relations.

The matrix [P] is inverted and added at the appropriate positions in the glob-

al stiffness matrix. The elastic stress intensity factor is calculated for

each crack as follows:

K = (_a) I/2 [F1 oA + F2 oB] (3.2-12)
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where K = stress intensity factor

a = crack depth

oA : axial stress

oB : bending stress

F1, F2 = functions in terms of crack depth and beam thickness.

The functions F 1 and F2 determine the effect of a crack on the stiffness

of the structure. These variables are functions of the crack depth and beam

thickness. In addition, these variables are calculated internally in the

Mechanics of Materials Model (MOMH) and are not required as input.

The MOHM computer code was designed to be utilized as an initial analysis tool

for hot section components. Beam elements can be used to create simple three-

dimensional finite element models that approximate the axial, bending and tor-

sional stiffnesses of the components being analyzed. The rectangular beam sec-

tion used in any particular model has stiffnesses that are a function of the

dimensions of the cross section of the beam. The axial stiffness is dependent

on the cross sectional area; the bending stiffnesses are related to the mo-

ments of inertia about the appropriate axes; and the torsional stiffness is

derived from the polar moment of inertia. Application of simple mechanics of

materials calculations and engineering judgement are needed to ensure a beam

design that will produce accurate results.

3.2.2 Program Validation/Verification

Some of the test cases (i.e., TEST1 - TEST5) which have been executed to val-

idate MOMM computer code are summarized below. Each of these cases test vari-

ous segments of the theory and computer code.

TEST1 - Cantilever Beam With Axial Load

A cantilever beam is loaded with a single static compressive loading incre-

ment. The beam (Figure 3.2-2) is made up of one member, with all degrees of

freedom constrained at one end and all but two constrained at the end where

the load is applied. The simple material model is used, and the loading causes
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only elastic displacements. The lowest frequency and buckling factor are ob-

tained. The displacements, strains and stresses are found to be:

uI = P/K = -10 -4

cI = Ul/L = _10 -5

oI = E_1 = -100

The resulting lowest frequency and buckling factor are:

w = 22.5
flowest = _T -=

Ku 2

cr = IT_-= 833.3

Agreement between these computed values and independent closed-form solutions

is exact.

10

100

EA - 107

Ku I -EA/!.- 106

Ku2 - 12EI / L3 = 10 4

_r
q

////_F,//

Figure 3.2-2 Schematic of TESTI Beam
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TEST2 - Simply Supported, Centrally-Loaded Square Plate

A quarter of the square plate is modeled using symmetry boundary conditions

(Figure 3.2-3). Four outside beams and four interior diagonal beams are used,

with dimensions of the beams chosen so as to reproduce the stiffness and mass

of the plate. One static loading increment is used with the simple constitu-

tive model in the elastic range. The nonconstrained degrees of freedom are

shown.

The theoretical central displacement is:

u2 = .01160 pa2/D

u2 = -3.2428 x 10-6

The result from the MOMM computer run is:

u2 = -3.4712 x 10-6

u3

u2
u 8

p___

\ ... \ \4 a=8

u7 _: 9.1575 X 105

y -_P-_m- u I

_ X

Figure 3.2-3 Square Plate Approximation Centrally Loaded
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TEST3 - Beam With Axial Enforced Displacement (Static)

A static analysis (Figure 3.2-4) is performed using Walker's vlscoplastic ma-

terial model with twelve loading increments. The properties of Hastelloy X at

a temperature of 871"C (1600OF) are used, and the tip displacement is enforced

at a strain rate of 3.9 x 10.3 sec -I. The computer program reproduces the

experimental results. A plot of the stress-strain curve obtained from the out-

put is shown in Figure 3.2-5.

u3 _(

Ul _q

T

u2

r7

Lku..0015

A t = .07692

Figure 3.2-4 Schematic of TEST3
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Figure 3.2-5 Stress-Strain Response for TEST3
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TEST4 and ..... Beam Wi _-L " ............ ' ....,r._,o - u= Mx=a, Enforced u]sp,acemencs t =ranslenT,)

Both test cases contain a beam fixed at both ends with a node in the middle of

the beam (Figure 3.2-6). One end is displaced so that the strain rate equals

3.9 x 10 -3 sec -1. A transient analysis is performed, with TEST4 containing

Walker's viscoplastic material model and TEST5 containing the state-of-the-art

material model. The viscoplastic material model uses the properties of Hastel-

l oy X at a temperature of 871°C (1600°F). Figure 3.2-7 shows the displacement

at the enforced displacement node, as well as the displacement at the center

node versus time for each model. The results agree exactly with those obtained

using a simple Euler integration.

A u = .19748

To;At-.00T/9

7,77

Figure 3.2-6 Schematic of TEST4 and TEST5

4.0

f-I MIDDLE NODE - STATE-OF-THE-AFt1"
z
v

Z 3.0
LU

LU

2.0

Q

1.0

0"0 .03116 .06232 .09348 .12464 .15580 .18696

TIME (SEC.)

Figure 3.2-7 Displacement History for TEST4 and TEST5

39



TEST6 - Beam With Crack

Cracks can be added to the structure at any point between beams and on any of

the four faces of the cross section. The rules governing the input require

that at the crack location, two grid points (GP2 and GP3) must be defined with

identical coordinates. Since the crack is assumed to act at a nodal location,

there is no length associated with the crack segment; therefore, the user must

define a vector (vx) in the direction of the beam length (the element x-axis

direction). The local y-axis must also be entered (Vy) to define the element

coordinate system. Other data input parameters include geometry set indicator,

material set indicator, crack depth (D), and a parameter that indicates on

which face of the cross section the crack exists. Multipoint constraint equa-

tions must be used to set all the degrees of freedom of the two grid points

defining the crack (GP2 and GP3) equal to each other except for the axial and

rotational degrees of freedom. The change in the axial and rotational degrees

of freedom between the two grid points (GP2 and GP3) is solved for by using

the crack stiffness and axial force and bending moment at the crack due to the

loading on the structure (refer to Figure 3.2-8).

Y

BEAM 1 BEAM FACE
WHERE CRACK
EXISTS

GP1

Z

Z

VX

GP2, GP3

GP4

Figure 3.2-8 Schematic of Crack Simulation in Beam
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A b==m with a crack u,_-wlru= c, rougn itS thickness and subjected to a tensile

load is analyzed. The beam is modeled with two elements. Note that the two

grid points at the crack, node 2 and node 3, are assigned the same coordi-

nates. Four multipoint constraint equations are input to set all but the axial

and bending degree of freedoms equal at node 2 and node 3.

,TIlil5

I

Figure 3.2-9

EA- 10 7

CRACK

Schematic of TEST6 Beam

The simple material model was used, and the load is in the elastic range. The

default value of two integration points in each direction of each beam is used.

The results show that the axial deflection at node 4, which would be 1.0 x

10-5 without a crack, is equal to 1.0204 x 10-5. The stress intensity fac-

tor was found to be 10.931. Using an analytical expression for the stress in-

tensity factor of a single-edged notch gives a value of 10.860.

The table below shows the comparison between the MOMM computer code results

and analytical results for the stress intensity factor for different crack

depths,

K I K I

Crack Depth (MOMM) (Analytical)

.10 6.442 6.726

.15 8.738 8.855

.20 10.930 10.860

.25 13.374 13.382

.30 16.220 16.310

.35 19.623 19.818

.40 23.764 23.989

.45 28.916 29.249

.50 35.449 35.845
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For this example, the value of the KI calculated in the MOMM computer code

agreed with the analytical result except when the crack depth was less than

0.10. In general, the user should be aware that the accuracy of the calcula-

tion of KI will decrease when the crack depth is less than one-tenth the

thickness of the beam.

TEST7 - Beam With Transverse Hole

A beam with a transverse hole is loaded with a moment so that the bending is

in the plane of the hole. The model consists of three beam elements end to

end, with the middle beam containing the hole. The beam cross section is a 2x2

square, and the rectangular transverse hole is lxl square. The hole is input

by setting the transverse hole thickness in the z-direction equal to one and

the middle beam length equal to one. In order to capture the stress in the re-

gion of the hole, seven integration points in each direction are used in the

middle beam. The simple material model was used, and the loading is elastic.

Y BEAM 2

Z

MZ = 400

,---X

Figure 3.2-10 Schematic of TEST7 Beam

The displacements, strains and stresses are solved for, taking into account

the reduced stiffness of the beam with the transverse hole. Interpolating

using the stresses obtained at the integration points, the stress at the edge

of the hole is found to be 171.4. The stress at the edge of the beam in the

section of the hole is equal to 342.9. Stress concentration factors are

printed out in the output for a circular hole with a diameter equal to the

thickness of the rectangular hole. The in-plane bending stress concentration

factor is equal to 2.0, and the stress at the edge of the hole should be mul-

tiplied by 2.0, i.e., the stress at the edge of the hole is equal to 342.9.
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Li st of Symbol s
Referenced Within Section 3.2

S_,mbol

tA}

Iv}
[M]

DT

[I]

Description

Acceleration vector

Incremental force vector

Velocity vector

Mass matrix

Time step

Eigenval ue

Identi ty matrix

Eigenvec tor

Page

30, 31

30, 31

30, 31

30, 31

30, 31

31

31

31
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3.2.4 Problems That Can Be Solved Using MOMM

The following table presents problems that can be solved using MOMM.

Material Behavior

Simpl ified

Static Analysi s x

Transient Analysis x

Lowest or All Frequencies x

Lowest or All Mode Shapes x

Buckling Factor x

Buckling Mode Shape x

Initial or Tangent Stiffness for x

Frequencies and Buckling

Applied Forces and Moments x

Enforced Displacements x

Thermal Loads x

Cracks x

Holes x

Mul tipoi nt Constrai nts x

Walker's

Vi scopl astic

X

X

x

x

X

x

x

X

x

x

X

X

x

Note: Buckling calculations cannot be performed in a transient problem.

State of

the Art

X

x

x

x

X

X

x

x

x

X

x

X

X
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3.3.1 Summary

The finite element code _OST (MARC Hot Section Technology) has been further

developed based on the mixed iterative solution technology whose concepts and

basic hypotheses were defined in the first year effort. These concepts have

been extended in the current phase to incorporate the effect of multiple em-

bedded singularities in generic modeling regions. Specifically, a local mesh

refinement technology has been generated based on the mixed element concept;

the approach involves a supplemental iteration in conjunction with the intro-

duction of a higher order polynomial representation for spatial discretization.

3.3.2 Introduction

The mixed finite element approximation and its associated iterative solution

algorithms have been developed for three-dimensional inelastic analyses with

particular application to turbine engine hot section components. The numerical

algorithms have been further improved in areas involving accuracy of solution

and efficiency of computation.

The enhancement of solution capability has been sought in order to be able to

deal effectively with problems involving multiple embedded singularities in

generic modeling regions. The concept of subelement iteration has been derived

and tested for the present purposes and its numerical performance is shown to

be superior to that of the conventional finite element method.

The program development effort includes extensive testing of the capabilities

bui|t into the MHOST program as well as further enhancements to control the

iterative procedure in a precise manner. An interface file is generated which

can be handled by most commercially available finite element postprocessing

packages.
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In this section, a number of validation/verification problems are included to

demonstrate the capability and the performance of the algorithms built into

the MHOST program package.

3.3.3 Literature Survey

Reports, books and journal articles related to 'nonstandard' finite element

methods have been surveyed with the main objective being the search for useful

numerical technology in the framework of the mixed iterative solution approach.

In the past, 'nonstandard' finite element methods, such as the mixed and hy-

brid methods, have not been exploited in a systematic manner. The few excep-

tions generally involve hybrid elements for plate and shell analysis which

generate element 'stiffness' equations or mixed elements for incompressible

problems based on the Lagrangian functional used by Herrmann (Reference 1).

As documented in the First Annual Status Report (Reference 2) and in various

research papers (References 3 through 6), iterative algorithms for generating

continuous stress fields such as those developed by Cantin, Loubignac and

Touzot (Reference 7) can be identified with the mixed finite element method.

It is important to note that in constructing the iterative methods, use of the

Hu-Washizu variational principle is crucial to setting up practical useful

algorithms. In a recent paper (Reference 8), a similar observation was made

and a finite element method was constructed from the Hu-Washizu principle with

application to finite deformation plasticity.

Except for a few early papers such as those mentioned above and literature

appearing after the present development effort was initiated, no directly

relevant work has been published describing constructive iteratlve solutions

for the mixed finite element equations derived from the Hu-Washlzu form. There

are, however, a number of papers indirectly relevant to and somewhat useful

for further development of the solution strategy employed in the MHOST code.
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The algorithm is viewed as composed of three steps. First, the linearized mo-

mentum equation is solved in terms of the displacement vector for precondi-

tioning purposes. Second, the postprocessing algorithm is entered to generate

the strain field based on the mixed interpolation which is used for the inte-

gration of the constitutive equation. Third, the equilibrium is iterated to

satisfy the nonlinear virtual work equation with respect to the stress field

interpolated in a mixed manner.

It should be noted that the quality of the displacement field generated by the

preconditioner contributes significantly to the overall quality of the solu-

tion as well as the convergence characteristics. The use of equivalent stiff-

ness in the element discontinuous strain mixed forms is a possible numerical

strategy for these purposes (References 9 and 10). In particular, recent ap-

plications to plates and shells involving lower order element technology indi-

cate possible improvements for the preconditioning operations (Reference 11),

with further efficiency gained by using lower order quadratures (Reference 12).

The strain recovery algorithm based on the mixed interpolation is found to be

virtually identical to the classical methodology based on the consistent con-

jugate stress distribution studied in References 13 and 14. Recent papers

(References 15 and 16) present a systematic method to construct and analyze

postprocessing algorithms. It is claimed that there are postprocessing proce-

dures which provide accuracy for various quantities of the same order as that

provided by the energy error estimate in finite element displacement algo-

rithms. This statement agrees quite well with experimental observations by Owa

(Reference 17) and Nakazawa, Owa and Zienkiewicz (Reference 18). Also, the

super convergent results, in terms of stress and strain as well as displace-

ment, often observed in the first year of this project may be due to the

higher order convergence rate of the postprocessing algorithm used for the

strain recovery computation. No literature is available on the effect of nu-

merical quadrature in the postprocessing algorithms except a recent technical

note by Simo and Hughes (Reference 19) on assumed strain involving the so-

called B type algorithms for plates and shells.
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Integration algorithms for nonlinear constitutive equations, in particular
rate independent plasticity, are well-established as indicated in the Task I

literature survey (Reference 20); and one of the most reliable algorithms,
based on the radial return concept (Reference 21) has been implemented. No

systematic effort has yet been reported on algorithm development for advanced
viscoplastic constitutive models including temperature effects. Further liter-

ature search and original investigation is required in this field.

Methods of equilibrium iteration have been investigated in recent years and a

number of useful papers and reports have appeared, as mentioned in the pre-
vious literature survey report. A survey and series of experiments (Reference

22) provide a useful collection of algorithms and numerical results with ap-

plication to nonlinear plates. Basic algorithms for the Newton-Raphson and

Modified- and quasi-Newton methods are compared in the displacement method
framework. As demonstrated later in this section, algorithms discussed in a

classical report by Matthies and Strang (Reference 23) are usable even in the
context of the mixed iterative method.

The algorithms and convergence arguments directly applicable to the present

framework are only available from literature on augmented Lagrangian methods

for the quadratic minimization problem with linear equality constraints such

as incompressibility and the Dirichlet boundary condition. Possible improve-

ment of the iterative procedure is indicated in Reference 24, and the numer-

ical test examples studied in References 25 and 5 show that significant im-

provement is obtained by using such algorithms for the analysis of Stokes'

flow. Similar mathematical discussions and algorithms are also found in Ref-

erences 26 and 27. The original idea of the mixed iterative solution is, how-

ever, found in a historical work by Arron, Hurwicvz and Uzawa (Reference 28)

and the class of iterative algorithms for mixed problems is referred to as th___ee

Uzawa method.

In the context of linear elastic finite element analysis, the use of mixed

approximations and equilibrium iterations has appeared in an ad hoc fashion

repeatedly in the literature other than the work by Cantin, et al (Reference

7). For nonconforming plate bending elements, Crisfield (Reference 29) has
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proposed an iterative algorithm to improve numerical accuracy. In the paper,

the similarity of the concept (based on a modified Hellinger-Reissner princi-

ple) to the initial strain method iteration is pointed out. Also, an important

observation by Crisfield is that all significant changes occur in the first

iteration of the mixed process.

The implementation of mixed finite elements without an iterative solution is a

topic that was extensively studied several decades ago, mainly with applica-

tion to linear problems in mechanics as discussed in a survey by Zienkiewicz

(Reference 30). These experiences have been used here to avoid possible numer-

ical difficulties particular to this methodology. This is an important issue

to be investigated. The characteristics of the particular algorithm used as

the postprocessor needs to be understood in the mixed method framework, so as

to fulfill the necessary conditions for stability and convergence. Regardless

of the solution algorithm, the mixed method needs to satisfy the stability

condition referred to as the Babuska-Brezzi condition in some sense (Refer-

ences 31 and 32). However, when equal order interpolations of displacement and

stress are used, possible violation of this condition is indicated by Oden

(Reference 33). Resultant oscillations of the numerical solution are indicated

therein under special circumstances.

As experienced in mixed/penalty finite element computations for incompressible

problems, however, the implication of the Babuska-Brezzi condition is not

quite clear. For instance, as discussed in Reference 34, stability can be

achieved by using a class of unstable elements which violates the condition

priori but which produces stable results by incorporating a postprocessing

algorithm which satisfies the necessary condition for the stability.

Modern development of mixed finite element methods mainly involves construct-

ing the displacement stiffness matrix from the element discontinuous approxi-

mation for additional variables (Reference 35). The derivation of this class

of methods is based on the equivalence theorem stated in Reference 9. An im-

portant development along this line is a generalization of equivalence theorem

proposed in Reference 36, indicating that for all numerically integrated dis-

placement finite element methods, there exists an equivalent class of mixed
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methods based on the Hu-Washizu principle. This observation provides some in-

sights into the iterative process with particular application to inelastic

problems. As mentioned earlier, these developments of 'reducible' mixed forms

at the element level are useful mainly to construct the preconditioning system

of equations as well as to fine tune the equilibrium iterations.

For the numerical modeling of singularities embedded in a structure, papers on

fracture mechanics have been surveyed. For displacement finite element tech-

nology, the report by Fine (Reference 37) covers the technology to date. Ex-

cept for a few efforts such as reported in Reference 38, not many papers and

research reports are available discussing mixed and hybrid finite elements

with application to fracture mechanics, in particular, nonlinear material pro-

blems. A paper by Babuska and Miller (Reference 16) on postprocessing to cal-

culate the stress intensity factor was found useful for constructing and

validating the numerical algorithm implemented into the I_OST program. The

general strategy for numerical postprocessing is extended to deal with pro-

blems with singularities.

A series of papers (References 15 and 16) presents possible utilization of

postprocessing technology and adaptive mesh refinement. The concepts are

closely related to mixed iterative solution algorithms in conjunction with the

subelement calculation as discussed later in this section. Literature on adap-

tivity and a posteriori error estimate (Reference 39) has been found useful in

this line of development.

A series of notes by Axelsson (References 40 and 41) indicate the possible

utilization of successive relaxation techniques for the solution of finite

element equations, in particular, the mixed system of equations. However, no

evidence that such algorithms can be used for nonlinear solutions is provided

in those publications.
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3.3.4 FoPmulation Strategy and Deveiopment

3.3.4.1 The Global Solution Strategy

The nonlinear problem involving the inelastic response of a material body in

an open, bounded domain _ with sufficiently smooth boundary _ is presented

in this section and an augmented form of the generalized nonlinear Hu-Washizu

variational principle is derived in the infinitesimal deformation setting. A

generic solution algorithm is constructed which is valid for quasi-static and

dynamic-transient analyses.

The procedure discussed here represents a generalization of the algorithm de-

veloped in Task I of this project (Reference 2), and the resulting scheme can

be combined with various solution algorithms and time integration operators

other than the conventional Newton-Raphson and Newmark-_ methods.

The equilibrium equation is given by:

-oij,i = p(fj - aj) (3.3-1)

where p is the material density, assumed constant, with 4, • and _ being the

stress tensor, the acceleration vector and the body force vector respectively.

We assume a rate constitutive equation:

6ij : (DT)ijkl _kl (3.3-2)

with _T being the tangent material modulus, and _ and _ the stress and

strain rates respectively. The strain tensor component is given by:

i + uj ) + co.. (3.3-3)cij = _ (ui,j ,i ij

with c° being the initial strain due to thermal expansion and creep effects.

The usual equality constraints are imposed on the boundary such that:
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and

(k)
uk = Ok on aft 1 (3.3-4)

(k)
tk = °kl nl = _k on a_2 (3.3-5)

The weak variational form associated with the above problem statement is:

* * (k)
(oij, uij) = (p(fj - aj), u;) + < _k' Uk> a_2

I ,j

(3.3-6)

(3.3-7)

and

( ( )})(. o)* 1 + uj = °ij ¢ij (3.3-8)°ij' cij " "2" ui,j ,i '

where (.,.) denotes the usual L2 inner product over the domain _ and <.,.>

is the integral defined on the specific boundary, with * indicating arbitrary

variations.

Elimination of stress and strain from the above system of variational equa-

tions results in the virtual work equation in terms of displacement:

a(u, u*) - (f, u*) = 0 (3.3-9)

with a(.,.) being the usual energy product. The essential boundary condition,

equation (3.3-4), can be incorporated by virtue of the penalty approach:

a(u, u*) - (f, u*) + ¢-1 < Uk _ Ok , Uk > afl_k) = 0 (3.3-10)
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* -1 * _k)(°ij' ui,j) + ¢ < Uk - Uk' Uk > a_

= (p(fj-aj), u_)+< _'k' Uk> a'9_ k)

(3.3-11)

It can be shown that the simultaneous weak variational statements, equations

(3.3-6) through (3.3-8), may be derived directly from the Hu-Washizu princi-

ple. This result implies that the boundary conditions, equations (3.3-4) and

(3.3-5), enter into the system of equations only via the conservation law for

linear momentum. In this setting, imposition of boundary conditions for the

stress/strain mixed mode independent variables is unnecessary. If such con-

ditions are applied, the well-posedness of the problem may be disturbed yield-

ing an erroneous solution of possibly a rank deficient system of equations. In

addition, the penalty approach involving the Dirichlet boundary condition does

not require the space of admissible displacement variations to fulfill the ho-

mogeneous counterpart of the same condition.

Using an equal order interpolation function N for all the variables involved

in the analysis, we have:

uk = NM UMk
(3.3-12A)

ak = NM aMk = NM UMk
(3.3-12B)

cij = NM CMij
(3.3-12C)

oij = NM °Mij
(3.3-12D)

and for the input (initial) quantities:

fk = NM fMk
(3.3-12E)

0

Eij = NM CMi j
(3.3-12F)
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resulting in a system of algebraic equations:

mB

P 0 B

0 D -C

BT -C 0

F

= 0
N

Q

(3.3-13)

Denoting the L2 inner products over the domain by (.,.) and the surface in-

tegral by <.,.>, the entries of matrices in equation (3.3-13) are:

and

-1 N>P = c <NT,

B= (VN, N)

C = (NT, N)

D = (NT, DTN)

M = p (NT N)

F = (NT f) + <NT, t>

Q = (NT, cO)

Note that, for the sake of simplicity, the time integrated form of the rate

constitutive equation is assumed. The details of the incremental process and

the stress recovery are discussed later in this section. Elimination of the

nodal strains and stresses leads to a 'displacement' solution form:

I B(C) I D(cT) "I BT + u = F - M a (3.3-14)
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with

A

F = F + B(C) T D(cT) -1 Q, (3.3-15)

whereas the standard finite element result based on equation (3.3-9) is ap-

proximated by a somewhat simpler form:

(K + P) u = F - M a + Q', (3.3-16)

with Q' being the nodal force generated by the initial strain in the structure.

An iterative solution algorithm for the quasi-static counterpart of equation

(3.3-13) can be constructed as follows:

(a) Set a vector R = O; initialize the displacement vector u = 0

(b) Solve the preconditioning equations to update the displacement such

that:

u = u + A-1 (_- R) (3.3-17)

(c) Recover the nodal strain:

e = (cT) -I (BTu - G) (3.3-18)

(d) Integrate the constitutive equation:

tY.D"o = T e dt* (3.3-19)

with t* being the quasi-time associated witll deformation history.
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(e) Evaluate the residual:

R = BT s (3.3-20)

(f) If the residual is small enough, then exit; or else repeat from step

(b).

As is obvious from the above discussion, the choice of the preconditioner A is

crucial in obtaining convergence characteristics necessary for a practical im-

plementation. For instance, if:

A = B(C) -1D(cT) -1B T + P, (3.3-21)

then no iteration is needed. However, sparseness properties of the finite ele-

ment system matrix could no longer be exploited if the above form were to be

utilized. As a reasonable compromise, we use the equilibrium equation in-

volving an augmented displacement stiffness matrix which is set to:

A = K + P. (3.3-22)

Other methods of preconditioning have been investigated, but so far no robust

scheme is known to be applicable for a wide range of solid and structural

analyses (Reference 42). Except for minor modifications, the present solution

utilizes the form defined by equation (3.3-22).

3.3.4.2 Incremental Iterative Solution Algorithms

The inelastic problem is solved through the deformation history in an incre-

mental manner. Let the solution for a given state of displacement, strain and

stress which satisfies the nonlinear algebraic equation (3.3-13) for specified

load and displacement boundary conditions be identified by un, en, s n,

An
and F , respectively. Then for a given load increment, A_n, the increments

of displacement, strain and stress denoted by AUn, aen_ , and Asn_ are de-

termined in an iterative fashion as described in the previous section. Note
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that the tangent stiffness _T is used instead of the total stiffness equa-

tion in the preconditioning process. To follow a complicated equilibrium path,

an automatic adjustment procedure which controls the size of the load incre-

ment in the iterative process is available. The algorithm in outline form is:

(a) Set the residual vector R = 0, initialize the incremental displace-

ment vector Aun = O. If the first increment, initialize the total

load factor },.

(b) Project the displacement by:

. K-1 ^du = ~ T F (3.3-23)

and if it is the first cycle of iteration, calculate the arc length

and initialize the incremental load factor (AX) and dX. The arc

length _ is defined by:

_= (du) 1/2

and the incremental load factor is given by solving the quadratic

equation for the iterative load change. Then, carry out the back sub-

stitution to get:

du K-1 A
. = .T (_'F.- .R) (3.3-24)

(c) Update the displacement vector:

Au = Au + du + dX du (3.3-25)
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(d) Find the total load factor update:

X= X + dX (3.3-26)

and the incremental load factor:

A),= AX + d), (3.3-27)

based on the spherical path formulation (Reference 43).

(e) Forl_ the residual vector in the mixed manner [equations (3.3-18

through 3.3-20)] and then check the convergence. If convergent, start

the next increment; or else repeat step (b).

Figure 3.3-1 presents a flow chart for this algorithm, and further details re-

garding this process will be included in the MHOST Theoretical Manual. In the

mixed method, steps which generate the residual force are treated as a package

of operations. Any iterative method designed to improve convergence character-

istics can be employed. For instance, the BFGS update procedure (Reference 23)

is utilized in the following fashion:

(a) Initialize the residual vector

such that:

and the incremental displacement AU

R = O; AU = 0 (3.3-28)

(b) Modify the residual with i being the iteration counter:

i I
(3.3-2g)
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d_ = KT -1 R (3.3-30)

where KT -1 is the latest stiffness matrix factorized in the current

increment. The BFGS iteration counter is set to 1 when the factori-

zation is performed.

(d) Complete the displacement update:

du = j=2 (I + wj ) d_~

(e) Form the new incremental displacement:

Au = Au + du

(3.3-31)

(3.3-32)

(f) Form the new residual with respect to the updated incremental dis-

placement using equations (3.3-18) through (3.3-20).

(g) Check convergence and, if necessary, repeat from step (b) or else,

exit.

Note in the above algorithm, vectors vi and wi represent the iterative

changes in the residual and displacement vectors respectively so as to form

the inverse BFGS update:

[KTi ]-I = (I + _i ~lVT)[KTi i]-I (I + v. wiT) (3.3-33)
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PRECONOITIONING BYTHE
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)

Figure 3.3-1 The Arc-Length Method for the Mixed Iterative Solution

Figure 3.3-2 presents a flow chart for the BFGS procedure. It is possible to

introduce combined BFGS - arc length algorithms in the mixed iterative solu-

tion algorithms incorporating a line search technique. The applicability of

such advanced techniques requires further investigation.
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Figure 3.3-2 The Inverse BFGS Update for the Mixed Iterative Solution
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3.3.4.3 Construction of the Stiffness Equations

A number of different element based integration schemes are implemented into

the MHOST numerical solution procedures. To achieve stability and coarse mesh

accuracy in the finite element solution, not all the terms in the equations

are integrated at the nodes. Two-point Gauss quadrature is used for evaluation

of the stiffness coefficients and the internal force vector in each coordinate

direction. A nodal quadrature (element discontinuous trapezoidal integration)

is used in the strain recovery operations, and all the stress components are

evaluated at the global nodes.

To extract near optimal numerical performance of the elements implemented in

the MHOST code, a selective reduced integration option is available in which

the shear strain components are evaluated at the internal element centroid.

All the integration procedures are internal operations designed to generate an

accurate finite element solution and are invisible to the user as results are

reported primarily at the nodes.

Two major refinements have been incorporated into the MHOST program to ensure

the generation of a good displacement update for preconditioning purposes.

These are an improved version of the filtering scheme for selectively reduced

integration and a modified numerical quadrature for plates and shells which

avoids possible kinematic mode excitation.

Coordinate Transformation and Filterin_ Algorithms

With application to general two- and three-dimensional elements, a method is

developed for construction of the element coordinate system and its utiliza-

tion to filter particular strain components for the selectively integrated

stiffness equations. A nonstandard notation is used to maintain maximum pos-

sible generality in the following discussions. Whenever indicial notation is

applied, the summation convention is assumed for repeated indices unless

otherwise stated.
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In this section, we first establish the coordinate systems used in the iso-

parametric finite elements. In particular, the local (pointwise) definition of

the orthogonal system associated with the Jacobian matrix is presented based

on the theory of polar decomposition, and this definition is used later to de-

vise a family of filtering algorithms for the element strain components. The

deformation tensors associated with the Jacobian matrix are used as a basis

for constructing the measure of isoparametric distortion. The filtering scheme

is constructed from strain tensor components with particular application to

selectively reduced integration to avoid possible numerical locking and fur-

ther to improve the accuracy of finite element displacement type solution

procedures.

Consider a linear isoparametric element in two dimensions. We denote the glo-

bal coordinates fixed in physical plane by x = (x 1, x2) and the isopara-

metric coordinates in the reference plane by _ = (ql, q2). The notation

and the results which follow are readily extended to general three-dimensional

elements.

We denote the Jacobian matrix by _, which is defined by:

j = [JkK] (3.3-33)

where

jkK = xk,K = Bxk/BqK (3.3-34)

By definition the Jacobian is invertible and for any invertible linear trans-

formation there exists a decomposition, known as the polar decomposition such

that:

J = R U, (3.3-35)
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where R is the orthogonal rotation tensor and U is a symmetric, positive-

definite matrix often referred to as the right stretch tensor. In the present

setting, the rotation tensor represents the orientation of the physical coor-

dinate system with respect to the orthogonal basis associated with the iso-

parametric coordinates in physical space. Hence, its inverse gives the basis

vectors for the orthogonal coordinates parallel to the element orientation.

The computational procedure to obtain R-1 is to utilize the relation:

jT j = UT U, (3.3-36)

as demonstrated in Reference 44 among several others, together with the decom-

position, equation (3.3-35):

R : J U-1 (3.3-37)

The inverse of the right stretch tensor is obtained from the eigenvalues and

eigenvectors of the right Cauch_-Green tensor C which is defined as:

C = jT j. (3.3-38)

Hence,

U-1 = -1/2 = NCT ),C1/2 NC (3.3-39)
C

with )'C and NC being the eigenvalues and eigenvectors, respectively, ar-

ranged in matrix forms. Hence, the equation used in the actual computation is:

R = J NcT XE1/2 NC . (3.3-40)

The purpose of selective integration is to avoid numerical locking due to the

overestimation of certain element deformation modes as illustrated in Refer-

ence 34. This is realized by integrating the contribution of strain energy

associated with the strain components characterizing such deformation modes at

the reduced integration points. The strain components to be under-integrated

are not defined in the global coordinate system but in the coordinate system

parallel to the element orientation given by the rotation tensor R discussed

above.
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tensor component in the local coordinate system. Denoting the coordinate

transformation matrix by g such that:

g = [gk] = R-1 (3.3-41)

where the superscript and the subscript denote the local and the global coor-

dinates, respectively. Then we have:

e(k_) k I kl k £ k _ (3.3-42)ij = gi gj c = gi gj gm g Cmn"

Introducing an array G referred to as the filtering matrix such that:

G_. k k
lJ = gi gj (no sum on k),

(3.3-43)

we simplify the above expression as:

(k() k G_ (3.3-44)
¢ ij = Gim jn Cmn

Hence, the volumetric strain in the element coordinate system is given in

terms of the global strain components by:

(v) k G_ 6kl
cij = Gim jn _mn

and the deviatoric strain by:

(D) k _ k_)
E ij = Gim Gin (1 - _ Emn

where 6k_ is the Kronecker delta.

(3.3-45)

(3.3-46)

Defining the original strain component e by:

e = B u, (3.3-47)

where B is the usual strain-displacement matrix calculated at the quadrature

points and u is the nodal displacement vector, the energy functional I(u) is

obtained in terms of nodal displacement for linear elasticity as an example by,

i(u) /xe(V)e(V)_e(D)e(D)/f " /T"= : dx + : dx - u dx - u ds (3.3-48)
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where : denotes tensor inner products, X and _ are the Lame-Navter coeffi-

cients and f and T are the prescribed body force and surface traction respec-

tively.

In the above energy functional, either the first term or the second term is

under-integrated to obtain the necessary effects of the selectively reduced

integration.

In computations, it is often more convenient to construct the strain-dis-

placement matrix selectively, so that the above energy functional can be writ-

ten as:

z(u)= uT f 0 Bs dxu - u (3.3-49)

where F is the collection of prescribed load terms which appeared in equation

(3.3-48). The new strain-displacement matrix BS is the selectively sampled

matrix equivalent to a certain mixed method under isoparametric distortion. In

matrix notation, the filter for the element volumetric strain is written as:

e(v) = GT I G B u (3.3-50)

and for the element deviatoric strain:

e(D) = GT (I - I) G B u (3.3-51)

at each integration point, where 1 and I are the matrices:

I = [1] ; I = [_ij] .

Hence, we have:

BS = GT I G B + G[ (1 - I) G B

(3.3-52)

(3.3-53)

where either the first or the second term is sampled at the reduced integra-

tion points and substituted to the array associated with the full integration

points. Such an operation is trivial only for the linear Lagrangian elements

with a single reduced integration point.
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Hour91ass Control Aigorithm for Piates and Shells

The kinematic model generated by the reduced integration of transverse shear

terms in 4-noded bilinear plate and shell elements often induces numerical

noise in the displacement preconditioning operation. However, excitation of

these modes, often referred to as the hourglass modes, does not cause signi-

ficant deterioration in the convergence of the mixed iterative algorithms. To

eliminate these modes, filtering methods have been developed either to con-

strain the modes by modifying the stiffness equation (a priori hourglass con-

trol) (Reference 45) or to filter out the sprious noise after the nodal dis-

placement is obtained (a posteriori hourglass control) (Reference 46).

A simplified a priori hourglass control algorithm based on an approach similar

to the scheme proposed in Reference 47 has been implemented into the MHOST

code. The algorithm takes advantage of the fact that the fully integrated

stiffness matrix (2x2 integration) does not contain kinematic modes.

The transverse shear stiffness matrix Ks is constructed as follows:

Ks = c K_2x2) + (1 - E) K(Ixl)~s (3.3-54)

where _ is a small parameter associated with the aspect ratio of the element.

Numerical locking is avoided due to the insignificant participation of the

fully integrated terms.

The value for c is calculated at the centroid of the element using the formula:

c = Cotc / h (3.3-55)

where tc is the thickness of the element at the centroid and h is the mesh

size given by:

h = ½ (Ixi - x41 + Ix 2 - _w_l). (3.3-56)
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Typically a value of 0.01 for co has been used for the validation and veri-

fication exercises.

No additional computational cost is involved in this hourglass control algn-

rithm because the element stiffness equations are integrated selectively and,

hence, K(2x2) is available without adding a new integration procedure.
_S

3.3.4.4 Time Integration Algorithm

The basic temporal discretization procedure is virtually identical to the

quasi-static solution of the mixed finite element equations. The system of

ordinary equations:

M U = I (u) (3.3-57)

where I is the nonlinear function of nodal displacements and is discretized in

time resulting in a recursive form for updating u such that:

At ut+At = Bt (ut) (3.3-58)

where A and B are the linearized versions of the time integration operator

matrices. The final goal here is to use formula (3.3-58) iteratively as the

preconditioner to find a displacement vector and its time derivatives which

satisfy:

M ut+At -- I (ut+At). (3.3-59)

The generalized Newmark-_ method is used to construct the iterative solution

algorithm. The semi-discrete approximation yields a set of nonlinear ordinary

differential equations:

T

ida + Cv + J B" o dx = F, (3.3-60)
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where the third term on the left-hand side is the integral associated with the
strain energy, and for elasticity we can write:

fB T o dx = K u . (3.3-61)

Otherwise, the deformation history needs to be integrated for evaluating this

term. The mass matrix is defined in terms of the nodal basis functions, and

mass density is designated by the symbol p:

M =rjp NT N dx (3.3-62)

One of the possible forms for the damping matrix is to express it in terms of

the mass and stiffness matrices as follows:

C = cI M + c2 K . (3.3-63)

Based on the weighted residual argument of Zienkiewicz (Reference 30), the

generalized form of the Newmark-/3 algorithm is written in a recursive manner

as:

ut+At = ut + Atvt + _I (1- 2/3)at + 2/3 at+At}

ut+At = vt + At {(1- y)a t + yat+At)

(3.3-64A)

(3.3-64B)

where t indicates the current time (known) and At is the current time incre-

ment.

Fhe overall equilibrium at the next time level is:

Mat+At + Cvt+At + _B T o (ut+At) dx = Ft+At

Approximating the energy term linearly yields:

(3.3-65)

Ik

BT o (ut+At) dx K Au + _B T= o (u t) dx (3.3-66)
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where K* is the tangent stiffness matrix which shall

Equilibrium at the current time level:

Mat + Cv t + ,_B T o (u t) dx = F t

be considered later.

implies that:

fB T (ut+At) * Fto dx = K Au + - (Mat + Cv t) . (3.3-67)

Substituting equation (3.3-67) into (3.3-65), we have the following incremen-

tal equilibrium form, where au is the displacement increment associated with

At:

Ma t+At + Cv t+At + K* *au = aF + (Hat + Cv t) . (3.3-68)

From equations (3.3-64A) and (3.3-64B):

at+At = 1 Au - i vt _ at
_At_ _ - ( - 1) (3.3-69A)

vt+At Y _ Y vt= _-E_Au - (i _-_) + At [(1 - y) - y ( -I)] at
• (3.3-69B)

Substituting the above, equations (3.3-69A) and (3.3-69B), yields a linearized

algebraic system of equations:

[7 ] " IAu = AF + (Ma t + Cv t) + M1 M + jA---tC+ K* 1 vt +

(_-_-i) at}+c I(1-_)v-At [(1-y)- y (_r_- 1)] at }

which we write simply as:

A ^
KAu=F

(3.3-70A)

(3.3-70B)

Now, we shall recast the above algorithm in the mixed iterative framework•

First, the conventional Newton-Raphson scheme is constructed in the context of

the displacement calculation:

A 1 A A

= Aun + K-n (F - Rn)aUn+ I
(3.3-71)
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with Rn being the residual at nth iteration cyc!e defined by"

A,.: Is<+. +<v<+'<}.
II

The updated values for acceleration and velocity vectors in equation (3.3-72)

are calculated from the formulae (3.3-69A) and (3.3-69B) using the latest up-

date for incremental displacements. The mixed interpolations for stresses are

used in place of total and incremental stress arrays in the first term of

equation (3.3-72). The computation is accomplished in exactly the same manner

as in the quasi-static incremental iterative analysis.

Introducing a new variable dn:

dn:K-i(_-_n),

the iterative update of the velocity and acceleration is written as:

with the starting values:

at+At at_At + I
n+l = _ dn

t+At _At+Vn+ 1 = vt Y dn

_ 1 vt at
at+At /_At -(_-_-1)

_+At y vtv = - (I - _-_) + At [(1 - y) - y ( - 1)] vt

calculated at the beginning of each time increment.

^
Note that the load vector F is left unchanged throughout the iteration.

(3.3-73)

(3.3-74A)

(3.3-74B)

(3.3-74C)

(3.3-74D)
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3.3.4.5 Etgenvalue Extraction for Nodal and Buckltng Analysts

The eigenvalue extraction procedure in the _g4OST program utilizes a standard

subspace iteration method to obtain the natural vibration frequencies and the

buckling load at a given quasi-static load step. The band matrix solver is

used to factorize the global stiffness equations prior to the subspace itera-

tions. In the subspace, the Jacobi method is used to extract all the eigen-

values and eigenvectors.

For a modal analysis, the consistent mass matrix is formed including the rota-

tional inertia terms for shell elements. The generalized mass is calculated

and reported in conjunction with the eigenvalues and eigenvectors.

In a buckling analysis, the initial stress matrix is calculated from the nodal

stress resulting from the mixed iterative solution for the initial quasi-

static loading. The displacement stiffness equations are used to represent the

structural model in the eigenvalue analyses. However, the accurate represen-

tation of the initial stress terms improves the overall accuracy of the buck-

ling load estimates.

3.3.4.6 Subelement Iterations

Computational fracture mechanics aspects of the inelastic analysis of turbine

engine hot section components are discussed in this section. The motivation

for this endeavor is to seek an economically feasible numerical process with-

out sacrificing the accuracy of the solution.

The standard finite element method is to take into account the effect of em-

bedded singularities by refining the mesh subdivision In the neighborhood of

such points, or alternatively to introduce special elements with singular

functions in this neighborhood. The currently avallable approaches are often

prohibitively expensive, especially when the analysis involves a structure

with multiple singularities, each of which needs special treatment.
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The use of nonstandard schemes, in particular the mixed finite element form,

is accurate and stable, and appears to be far more advantageous when compared

with conventional schemes in regular nonlinear structural analysis. Hence,

utilization of nonstandard schemes for problems including singularities is

worth investigating to see if a major improvement in computational fracture

mechanics can be realized.

The main reason for using the mixed finite element method in problems with em-

bedded singularities is that higher resolution for stresses and strains can be

obtained without excessive mesh refinement for the displacement variables near

the singularities.

In the framework of the displacement finite element method, the only informa-

tion primarily available from the computation provides the nodal displacements

from which the strain/stress components are calculated by differentiating the

shape functions. The stress/strain values are then used to determine fracture

mechanics related quantities such as the stress intensity factor and the J-

integral.

It is clear then that the accuracy of the strain/stress components is a full

one order less than that of the displacement components for the displacement

finite element method, even without a singularity. Moreover, the approximation

of strains/stresses could be extremely unstable near singularities, as well as

in regions where the deformation is highly concentrated. To obtain accurate

results for a problem with embedded singularities by the standard displacement

technology, mesh refinement near singularities is unavoidable in order to be

able to determine an accurate and stable displacement field, which indeed is

the only source for generating the strain/stress approximations. For the best

possible results, monitoring an a posteriori error indicator, together with

several passes of (adaptive) mesh refinement are advisable in such calcula-

tions.

73



When the strains or stresses, sometimes both, are included explicitly in the

finite element system of equations, in particular interpolated by cO-con -

tinuous basis functions, the resulting approximations are not only accurate

but also stable, having no spurious modes in the strain/stress recovery oper-

ator.

For regular problems, the numerical representation of the stress field in par-

ticular is quantitatively accurate due to the equilibrium condition being ex-

plicitly satisfied by the approximate stress field itself. Compared with dis-

placement method results, a full one order improvement is indeed expected of

the convergence rate in the mixed method for the same mesh subdivision. It

should be noted that the role of the displacement solution in the mixed form

is to generate qualitatively the deformation mode from which indirectly the

deformation gradient is extracted and fed into the stress recovery and equi-

librium iteration operations. Therefore, the quantitative measure of error in

the displacement vector contributes relatively less significantly to the over-

all error in calculating fracture related quantities.

The approximate solution procedure for a deformable body with embedded singu-

larities involves first solving the total structural problem without the sin-

gularities; this step shall be specifically referred to as the _lobal system

approach. The second step then computes the deformation and the stresses near

the singularity based on the first step results and is called the local system

approach. The concept is somewhat similar to substructuring in conventional

finite element computations. In Figure 3.3-3, the heirarchical structure of

the mesh subdivision and subelement representations is illustrated.

Assume that P in Figure 3.3-3(a) is a singularity embedded in the structure

tile size of which is small compared with the scale of the whole structure.

Typically, the conventional finite element representation needs a quite fine

mesh for such a situation. Figure 3.3-3(b) is an example of a reasonable mesh

subdivision to represent the global behavior of the structure. In this model,

the singularity is still embedded in an element, but not explicitly considered

in the numerical model. This model is referred to as the _lobal finite element

mesh.
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The subelement mesh subdivision is shown in Figure 3=3-3(c) where the e!e_nt

with an embedded singularity is subdivided further down to the scale of the

singularity and its effect is now evaluated explicitly.

O P

A SINGUL/g:UTY EMBEDDED IN
A STRUCTURE

b}

O P

THE _I_S_ITY EMBEDDED IN
ELEMENT

c)

I p
I
I

I l
I l
I I

4 I.
I I
I I
i I
I I
I I
I i

THE SINGUI.ARII_f REPRES_D
BY THE LEX_ALSUBELEMENT
MESH

Figure 3.3-3 Local-Global Representation of an Embedded Singularity
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Topologically, the global mesh is constructed such that the minimum element

size is much larger than the scale of the singularities so that no singularity

is identified by the global system. The local system is constructed in a

single global element and is coupled with the global system through nodes com-

mon between the single global element and the local elements within it.

A major difference of the present approach from substructuring is that the

local refinement takes place a posteriori and the information extracted from

the locally subelemented element is brought back to the global mesh via the

residual load correction. This implies that no special algebraic treatment is

required even when material nonlinearity occurs in the subelement region.

The concept of interacting two geometrical models implies an iterative algo-

rithm as follows:

(a) Solve the global system of finite element equations for precondi-

tioning purposes, equation (3.3-17).

(b) Use the above results together with information available for the

singularity to set up the local finite element equations which have,

in principle, the same form as equations (3.3-17) through (3.3-1g).

(c) Form the internal residual load vector based upon the result of step

(b) and modify the right-hand side vector of the global system.

(d) If the residual load vector is small enough, then exit; otherwise re-

peat from step (a).

As a result, overall equilibrium is achieved with respect to the presence of

the local system.

This solution strategy represents a mixed version of the adaptive process

which has been investigated in recent years and which has yielded results that

are encouraging for elastic stress analyses with singularities. The computa-

tional strategy we propose here is to define the local mesh and the refined

interpolation altogether in the region near the singularity in a manner some-

what similar to that of combined h-p refinement.
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As a result, we expect to obtain an accurate stress-strain solution in the

global approximation subspace enriched by the local approximations.

The final solution is found in the global-local system with the global system

being used only for preconditioning purposes. This means that factorization of

the approximate global stiffness matrix obtained by the conventional displace-

ment method may be sufficient to kick off the present solution procedure. Fur-

ther details will be discussed in following sections.

Consider as another practical situation a single displacement element with an

embedded hole. The isoparametric element in the physical plane shown in Figure

3.3-4(A) is mapped onto the reference plane as shown in Figure 3.3-4(B).

Some computational aspects need to be considered here for application of the

present method to practical problems of turbine engine hot section components.

From a programming point of view, a parametric representation of an elliptic

hole by its size, orientation and location in a displacement element is con-

venient because this allows the code to generate directly subelement mesh data

whenever such data are needed. The data structure is simple as no permanent

storage allocation is required for the subelement mesh. In Figure 3.3-4(B), an

example of such a ready-made subelement mesh is presented for a circular hole

located at the center of displacement element mesh.

On the other hand, it may be user-friendly and perhaps conceptually more gen-

eral to define explicitly the subelement mesh as an additional data set. The

data structure then needs to be reviewed so as to allocate additional memory

for subelement mesh storage.

As experienced in the h-version of adaptive mesh refinement, it is anticipated

that the subelement mesh approach will be used recursively in a fashion simi-

lar to that of the multi-level substructure technique. A well-organized data

storage scheme needs to be developed, therefore, in order to realize a fully

flexible implementation of the proposed method.
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In the following discussions, we assume (for the purpose of simplicity) that

the subelement mesh is defined in the isoparametric element coordinate system

rather than in the physical space in which the global mesh is defined.

The stresses and strains are represented at the nodes of subelements defined

in the first reference plane, Figure 3.3-4(B). We introduce variables to char-

acterize the internal deformation of the stress and strain subelements so as

to obtain these quantities uniquely in an accurate manner. As mentioned in the

first section, some further mathematical investigation is required to come up

with an optimal combination of subelement mesh definition, functions to repre-

sent the deformation of each subelement as well as the stress-strain inter-

pol ati ons.

A major difficulty encountered in multidimensional computation involves inte-

grating the coupling matrix B over the subelement, Figure 3.3-4(C). Once the

size of the hole and its location are identified, the values of displacement

interpolation functions are obtainable at every nodal point of the subelement

mesh. Denoting these quantities by NK, we introduce the local displacement-

type interpolation of N in these elements by:

N = N_ NK (3.3-75)

and the coupling matrix is integrated approximately by:

F ,,,K]. (33-76 
B = C

where the superscript S denotes the functions defined at the subelement level.

The calculation is carried out on each local subelement _S and summed over

the global displacement element. This general integration procedure plays a

central role in coupling the global and local meshes by representing the resi-

dual load vector at the global displacement node locations yet reflecting the

information at the local element level. For consistent definition of the oper-

ator matrix B, the transformation of the shape function from global to local
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needs to be carried out as defined by equation (3,3-75) on the isoparametrlc

element space, Figure 3.3-4(B). This must also be properly coordinated with

the fact that each subelement in Figure 3.3-4(B) Is individually mapped into

another isoparametric space, Figure 3.3-4(C).

It is obvious that the location of nodal points is needed in the element coor-

dinate system. When the locations of subelement nodal points are specified in

the physical plane, then the inverse of the nonlinear isoparametric mapping

needs to be calculated in order to find these points in the element coordinate

system.

We outline the solution strategy in a general format. First, as a precondi-

tioner, we introduce the conventional stiffness equation with respect to the

global displacement degrees of freedom u as follows:

K u = F . (3.3-77)

This is derived directly from the virtual work principle in terms of displace-

ment. A modified recursive form of tile mixed finite element equations is writ-

ten again in terms of the global unknown variables:

m

K 0 B

0 C -Q

_BT _QT 0

F+Ku

= 0

0

(3.3-78)

Setting u(°) (o)~ = _ and _ = ~0 with the superscript being used for the

iteration counter, we solve the system of displacement equations:

u (n+l) = u (n) + K-1 (F - Bo(n)). (3.3-79)
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Then the stresses and strains are updated in the subelement region by solving

implicitly:

°IT 0

¢(n+1)

o(n+l)

0

BT u (n)

_S

(3.3-80)

with us being the enriched displacement in the subelement region. To obtain

this quantity, the factorization of a displacement type stiffness equation is

required in this region.

It should be noted that the discussion presented here describes in general

terms the solution strategy used. The approach actually implemented into the

code involves hierarchical displacement approximations for realizing the in-

teraction between the global and local meshes.

Equation (3.3-80) is improved by increasing the information contained on the

right-hand side. The use of additional terms characterizing the deformation

near the singularity needs to be considered. The simplest approach, for ex-

ample, is to take the displacement as a dummy variable at stress-strain nodal

points, with the displacement interpolated by conventional polynomial basis

functions in a manner similar to that of the substructuring technique.

When such variables are introduced, the solution procedure becomes very close

to what is called the multi-grid method in the finite difference context. The

overall solution flow can then be given as follows:

(a) Solve for the global displacement by equation (3.3-79).

(b) Recover the strain at nodes in the global finite element mesh.

(c) Evaluate the stress at nodes in the global finite element mesh.
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(d) Enter the inner loop and calculate the displacement quantity (used

only as a dummy variable) in the subelement mesh.

(e) Evaluate the stress and strain by equation (3.3-80).

(f) Check the convergence in terms of residual in the subelement mesh. If

not converged, repeat from step (d).

(g) Evaluate the global residual including the stresses in the subele-

ment. If convergent, start a new increment; otherwise, repeat from

step (a).

Through the inner loop, the global finite element mesh interacts with the sub-

element and an accurate, high-resolution stress field is obtainable without

increasing the size of the global stiffness equations.

It is emphasized that additional coding is needed to incorporate steps (d) to

(f), which can be performed by adding an element routine to handle the em-

bedded singularities and by allocating the core storage associated with the

arrays used for the inner iteration. As the size of the algebraic equations

used for representing the embedded singularity is limited, a performance test

is needed to decide whether to employ either a nested loop for within-element

solution or factorization of the same matrix without iteration.

3.3.5 Computer Program Development

3.3.5.1 Solution Capabilities

Version 2.0 of the MHOST program, which is the development version for Task II

efforts, currently supports many options and a limited number of linear and

quadratic finite elements, all of which are operational for both the mixed

iterative approach described in Section 2 and the conventional displacement

method. The MHOST analysis capabilities are summarized in Tables 3.3-I and

3.3-II. Additional information is provided below through descriptions of the

control parameter keywords.
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Table 3.3-I

MHOST Analysis Capability: Element Definition Options

Elament Axt- Three- Three-
Definition Plane Plane symmetric Dimensional Dimensional
Options Beam Stress Strain Sol td Sol id Shell

Linear .1

Elasticity x x x x x

Simplified
Plasticity x x x x

"1
Elasto-
Plasticity

.x

X X X X X

Unified
Creep-Plasticity x x x x

Thema1.2
Strain X X X X X

X X X X X

*2
Creep
Strain

NOTES:

"1 Applicable to tsotropic and anisotreptc (user subroutines)
mterials.

*2 Not applicable to unified creep-plasticity in which these
quantities are the integrated part of the medel.

Table 3.3-II

MHOST Analysis Capability: Analysis Module Options

Analysts
Nodule
Option

Axt- Three- Three-
Plane Plane symmetric Dimensional Dimensional

Beam Stress Strain Soltd Soltd Shell

Quasi-
static
Analysis x x x x x

Buckltng
Analysts x x x x x

Hodal
Analysts x x x x x

Transient
Dynamics x x x x x
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*ANISOTROPY

Elastic material anisotropy may be included in an analysis by adding the user

subroutine UHOOK. The anisotropic plastic response of a material is described

by the user subroutine ANPLAS as documented in the MHOST User's Manual.

*BFGS

The inverse BFGS update procedure is invoked by flagging this optional parame-

ter. The default interative algorithm is the conventional Newton-Raphson

scheme.

*BOUNDARY

Nodal displacement constraints are imposed using a penalty approach as dis-

cussed in Section 3.3.4.2.

*BUCKLE

The initial stress stiffness matrix is formed and an eigenvalue extraction is

performed to obtain buckling modes. This option can be invoked at an arbitrary

step of the incremental nonlinear solution process in order to detect the

change in the buckling load due to inelastic response of the structure.

*CONSTITUTIVE

Three different constitutive formulations are included in the code for de-

scribing material behavior. They involve: (1) secant elasticity (simplified

plasticity) in which the material tangent is generated for use with Newton-

Raphson type iterative algorithms; (2) yon Mises plasticity with the asso-

ciated flow rule treated by using the radial return algorithm; and (3) the

nonlinear viscoplastic model developed by Walker, in which an initial stress

iteration using the elastic stiffness is utilized. A linear elasticity option

can be flagged for experimental purposes, and the default is the conventional

von Mises plasticity model. Anisotropic plasticity is invoked by updating the

user subroutine ANPLAS. The dum!y subroutine supplied with the MHOST code is

always required to produce correct results for isotropic cases.
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*CREEP

Creep effects are taken into account by integrating the time history in an ex-

plicit manner. An optional self-adaptive time step size control algorithm is

available.

*OISPLACEMENTMETHOD

This option invokes the conventional displacement model in which the residual

load is evaluated directly at the integration points. For linear elastic

stress analysis, no iteration will take place when this option is flagged. In

inelastic analyses, the material tangent is interpolated and multiplied by the

integration point strain which is directly sampled at the quadrature point.

This option cannot be used for the advanced constitutive model since the cor-

rect material tangent is not generated.

*DISTRIBUTELOAD

Body force and surface traction loadings are referred to as distributed loads

in the MHOST program. The body force option includes gravity acceleration de-

finable in any direction and centrifugal loading with the centerline and angu-

lar velocity specified by the user.

*DUPLICATENOUE

The continuity of stresses at nodal points can be broken by defining two nodal

points at the same geometrical location and connecting them by this option

which enforces compatibility of displacements only. This option is used to de-

fine the connections between generic modeling regions.

*DYNAMIC

The generalized Newmark time integration algorithm is entered by setting this

flag. A simple adaptive time stepping algorithm is employed at the user's op-

tion.
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*ELEMENTS

The elements included in this version of the code are described in Table

3.3-III. Core allocation is performed for the nodal and element quantities on

the basis of maximum storage space requirements among the types of elements

specified in this option.

*EMBED

The subelement iteration capability is flagged by this option which signals

the code to allocate the working storage for the subelement data in a hier-

archical manner. The actual subelement mesh definition and the nodal and ele-

ment data storage allocation take place when the individual subelements are

defined.

*FORCES

Concentrated nodal forces are defined and stored in an incremental manner.

Core allocation takes place only when this option is invoked.

*FRONTALSOLUTION

The frontal solution option for quasi-static analysis is implemented in this

version of the code. Out-of-core storage devices are utilized and, hence, the

capacity of the program is increased significantly. A direct access, rather

than a sequential access, file is used for the solution buffer to avoid over-

head due to the backspace operation in the back substitution phase.

*GMRS

Generic modeling regions are defined as collections of elements that model

geometrically parametrized parts of hot section components. Multiple generic

modeling regions in a given mesh are connected using the duplicated node op-

tion. Different parameters are specified for each generic modeling region, and
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the input data can be prepared separate!yo Internally, the complex of the ge-

neric modeling regions is treated as a single mesh for the purposes of con-

structing and solving the finite element equations. A table is prepared to

report results separately for each generic modeling region,

*LOUBIGNAC

Parameters for numerical quadrature used in the mixed iterative processes are

defined in a very precise way. Full integration, selective integration, or

selective integration with filtering can be chosen for construction of the

stiffness matrix. For residual vector integration, full and reduced integra-

tion can be selected. The strain integration can be performed either by using

uniformly reduced integration, trapezoidal integration with the reduced shear

strain approximation or the previous quadrature with the filtering option.

*MODAL

The free vibration modes of linear elastic structures are extracted when this

option is invoked. The subspace iteration technique is utilized and a power

shift option is included.

*NODES

All the variables are defined and reported at nodal points. In the incremental

processes, deformation and stress histories are integrated and stored only at

the nodal points. Note that this architecture economizes storage substantially

compared with fully integrated finite element displacement methods.

*OPTIMIZE

A band width optimization procedure, based on the Cuthil-McGee algorithm, is

applicable to in-core solution processes. No optimization procedure is re-

quired for the frontal solver.



*PERIODICLOADING

For transient calculations, nodal displacements and concentrated forces can be

input as sunisoidal functions using this option.

*POST

The postprocessing data, which contain all the information supplied to and

generated by the code, are written to the file connected to FORTRAN unit num-

ber 19. This file is formatted and can easily be manipulated by commercially

available postprocessing packages with minor modifications. The header record

of the file is designed to be compatible with the MARC post file which is pro-

cessed by many finite element graphics packages.

*PRINTSETS

The report generation is carried out on a nodal point basis with element inte-

gration point options provided by interpolation using the shape function.

*REPORT

The frequency of the line printer report generation is now controlled by this

option. The default is to print at every increment.

*SCHEME

Parameters that control the characteristics of the time integration operator

are defined by the user. The default is the average acceleration algorithm

coramonly used in nonlinear dynamic finite element analysis.

*STRESS

Boundary conditions for stress can be specified by the user as an option, al-

though no mathematical justification is yet available for this type of con-

straint. Any stress component can be prescribed at any nodal point. Simple
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numerical tests have shown that inconsistent imposition of stress boundary

conditions can lead to rapid divergence in the iterative process, so this op-

tion should be used with caution.

*TANGENT

This option invokes the modified Newton iteration procedure. The tangent ma-

trix is updated until a user-specified iteration count greater than or equal

to 1 is met. No updating occurs in subsequent iterations. The default itera-

tion count is equal to 1, and the procedure generated by this value is known

as the KT1 method of modified Newton iteration. This option has no effect

when the BFGS process is employed.

*TEMPERATURE

Nodal temperatures are read and used to generate thermal strains. These quan-

tities are used also for the evaluation of creep strain and the integration of

coupled creep-plasticity models such as Walker's model.

*THERMAL

Temperature dependent material properties are evaluated when this option is

invoked and the appropriate user subroutine is provided to the system prior to

execution. This operation is not necessary for the conventional creep model

since temperature dependence can easily be incorporated into the user sub-

routine CRPLAW.

*TRANSFORMATIONS

Coordinate transformations at nodal points are specified by this option in

which the angle of rotation is input by the user so that the code can generate

necessary transformation matrices. The postprocessing file does not support

coordinate transformations at this time.
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*TYING

Multiple degree-of-freedom constraint equations are specified by the user

through this option. Note that constraint equations are generated only for the

displacement degrees-of-freedom. This option is more flexible than the dupli-

cate node option since constraints may be applied to individual degrees-of-

freedom.

The following parameters are used to signal to the _IOST program the presence

of specific user subroutines:

*UBOUN *UFORCE *UTEMP

*UCOEF *UHOOK *UTHERM

*UDERIV *UPRESS

As summarized above, the analysis capability included in the MHOST code covers

most of the needs for inelastic analysis of turbine engine hot section compo-

nents. The free format data input routines and report generation packages have

been improved in the Task II program development effort to create a more com-

fortable environment for users. Presently, the code consists of around 30,000

lines of FORTRAN statements including extensive self-explanatory comment lines

in each subroutine. The preliminary system document was generated in an auto-

matic manner from these comment lines and the cross reference capability

available on the Prime FORTRAN compiler and linker.

Table 3.3-III summarizes the elements currently available in the MHOST code,

Version 2.0, and the parameters used internally to define element character-

istics. Further details are available in the MHOST User's t4anual.

Lagrangian rather than Serendipity quadratic functions are being employed in

the 14HOST code at present. This choice was based, in part, on the fact that

Serendipity elements are known to behave in a less accurate manner than

Lagrangian elements for nonlinear fracture mechanics applications based on the

quarter point technique. In addition, the lumped mass approximation for nodal

stress/strain recovery has not been implemented in Serendipity elements and,
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context of mixed iterative computations. Lagrangian elements have, in con-

trast, already produced encouraging results in the mixed tterative environment.

Table 3.3-III

HOST Code, Version 2.0
Elements and Parameters

Beam P. Stress P.Strain Axsym. Brick Shell

ITYPE 9 3 / 101 11/ 102 10/ 103 7 75

NELCRD 3 2 2 2 3 3

NELNFR 3 2 2 2 3 6

NELNOD 2 4 / 9 4 / 9 4 / 9 8 4

NELSTR 1 3 4 4 6 8

NELCHR 3 5 5 5 5 5

NELINT ? 4 4 4 8 4

NELLV 3 3 3 3 3 4

NELLAY 0 I 1 1 1 5

NDI 1 2 3 3 3 2

NSHEAR 0 1 1 1 3 1

JLAW 1 2 3 4 5 6

NELCRD

NELNFR

NELNOD

NELSTR

NELCHR

NELINT

NELLV

NELLAY

NDI

NSHEAR

JLAW

Number of coordinate data per node.

Number of degrees-of-freedom per node.

Number of nodes per element.
Number of stress and strain components per node.

Number of material property data for the element.

Number of 'full' integration points per element.

Number of distributed load types per element.

Number of layers of integration through the thickness of the shell
element.

Number of direct stress components.

Number of shear stress components.

Type of the constitutive equation.

Four-point Gaussian quadrature is employed in the stiffness calculations for

the Lagrangian elements in accordance with common practice. The lumped mass

matrix with unit density constructed for strain recovery is also based on re-

duced four-point quadrature instead of the nodal quadrature used in the linear

quadrilaterals. Similarly, other integrations in the strain recovery process

employ reduced integration in order to avoid stress/strain oscillation.
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The ongoing investigation of quadratic element technology will focus on repro-

duction of nonlinear material behavior and sensitivity to isoparametric dis-

tortion.

The algorithm used in the MHOST code to construct the residual load vector,

which drives the iterative solution, has employed mixed strain/stress inter-

polation for all the generalized strain/stress components. However, the mixed

continuous strain recovery for certain terms can possibly violate the neces-

sary condition for stability and cause convergence to an inferior numerical

solution after a number of iterations. This numerical instability is particu-

larly significant when the method is applied to incompressible problems and

the dilitation terms are smoothed during the iterative displacement update.

Due to the similarity in the mathematical structure of constraints, the trans-

verse shear terms in the bending of plates and shells could cause the same

difficulty if they are smoothed in the iterative process. Hence, a modified

algorithm which utilizes the smoothed stress field for all the terms except

the transverse shear so as to avoid possible numerical instability has been

implemented into the MHOST code.

3.3.5.2 Data Storage and Control Structure

The input data and information associated with the global finite element for-

mulation and solution are stored in blank common using a conventional dynamic

core allocation scheme. No array is prepared for quantities defined at element

integration points. The storage required for the subelement iteration is allo-

cated in the same work area in an indirect way. We prepare the element array

for pointers and the actual work area is allocated when the storage is re-

quired. At this time, the pointer array is filled. The conceptual representa-

tion of the indirect core storage scheme enables us to set up a multi-level

subel ement refinement.

In the recovery phase for residual vectors associated with the iterative solu-

tion, a flag is set to indicate whether the global displacement mesh is sub-

elemented or not. This flag is built into the code internally as part of the

element definition data array. The same flag can also be attached to the de-

finition data for subelements. From the global displacement mesh definition
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same fashion. That is, a tree structure of element mesh topology is

constructed.

The use of out-of-core storage may be needed to swap the information related

to different mesh levels, and the storage scheme for the element level data

manipulation is retained as it is. This means that the subelement mesh data

are loaded to the array where the global mesh is stored when the subelement

level analysis module is entered. If further refinement is activated, the

software stack is pushed down again. Such a recursive storage scheme enables

us to use the existing element manipulation scheme developed for the global

solution without major modifications.

The reporting scheme is such that the global solution is reported as it is

carried out in the present code, and then the same data stack is used for

generating reports separately at the subelement level.

The nodal coordinates of the subelement mesh need to be stored in terms of the

local coordinates defined in the global system. For catalogued mesh subdivi-

sions such as the one shown on Figure 3.3-4, these values are easily defined

in the required system of coordinates.

When the mesh is prepared by the user in physical space, the nonlinear equa-

tion which represents its isoparametric counterpart is solved by an iterative

manner. It is feasible to utilize the bilinear mapping function for the geo-

metrical definition of subelements, assuming that in practice, the subelement

size is small enough compared with the geometrical features of the entire

structure.

The actual subelement solution is carried out in the element residual calcula-

tion routine. When the subelement flag is set in the element loop, the subele-

ment solution driver routine is entered and the mixed iterative solution is

performed in the subelement domain. A set of procedures, which are somewhat

different from the global solution subroutines, has been developed to manipu-

late matrices for the subelement domain.

93



3.3.6 Validation/Verification Analyses

3.3.6.1 Analysis of Plate and Shell Structures

The complexity of plate and shell problems is mainly due to the higher order

derivatives in the variational functional, or equivalently the necessity to

introduce additional rotational degrees-of-freedom. The results of a series of

analyses which demonstrate the characteristics of the MHOST shell element are

presented in this section.

Clamped Plate with Central Load

The displacement convergence characteristics of the current version of the

plate and shell element are illustrated on Figure 3.3-5. The solution for a

clamped plate subjected to a concentrated load is plotted together with some

well-known plate solutions obtained using the finite element method. In terms

of the deflection at the center of the plate, mixed iteration produces results

consistent with a conventional mixed formulation. Note that the Reissner-

Mindlin plate solution (the result from displacement preconditioning) provides

a lower bound where the mixed and mixed iterative solutions provide an upper

bound of the solution. The MHOST code could be tuned to reproduce the lower

bound solution, if desired, by selectively undoing the continuous stress ap-

proximation, particularly for the bending moments.

Plate Supported at Corners

The performance of the hourglass control algorithm is demonstrated using an

example of a square plate supported at its corners and subjected to a concen-

trated load at its center. This is the same model problem used by Belytschko

and Tsay (Reference 12). The problem statement is illustrated on Figure 3.3-6,

and the results with and without the hourglass control are plotted on Figures

3.3-7 and 3.3-8. The participation factor for the fully integrated transverse

shear stiffness matrix was determined using this example and further valida-

tion analyses were performed to ensure that the hourglass control modification

does not significantly change numerical solutions.
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Figure 3.3-5 Clamped Square Plate
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SYM SYM

Figure 3.3-6 Corner Supported Plate with Central Concentrated Load

Figure 3.3-7 Lateral Displacement with Hourglass Control
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Figure 3.3-8 Lateral Displacement without Hourglass Control

Simplified Turbine Vane Airfoil

A highly simplified model of a turbine vane airfoil has been studied as part

of the shell element validation effort. The finite element model and applied

loads are shown on Figure 3.3-9. A primary motivation for analyzing this

structure was to determine the effects of kink angles between adjacent ele-

ments on the behavior of the MHOST mixed iterative solution process. As shown

on Figure 3.3-9, kink angles as large as 40_ were present in the model.

Constant thickness analyses were performed using MARC element 75 (bilinear

Reisner-Mindlin shell, Reference 11) and the NASTRAN QUAD4 element as well as

the MHOST shell element. Typical displacement results at nodes 10 and 20 are

shown in Table 3.3-IV. MHOST results with zero iterations compared very favor-

ably with the MARC and NASTRAN values. The _OST displacements for the iter-

ated analysis were larger than the other tabulated results, but this behavior

is not considered unreasonable for such a coarse mesh. However, the relatively

slow rate of convergence of the iterative process (14 iterations) is a source

of concern.
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6 - 10 0.25
11 - 15 0.15
16 - 20 0.10

LOADS: + x DIRECTION

NODE FORCE (LB.)
5 7.5

10 7.5
15 7.5
20 7.5

Figure 3.3-9 Simplified Vane Model
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Deck/Element

MARC/75

NASTRAN/QUAD4

MHOST/75

MHOST/75

Table 3.3-IV

Displacements for Constant Thickness Vane Model

Number of

Iterations

0

14

x-Displacement (in.)
Node 10

0.469 x 10-2

0.477 x 10-2

0.468 x 10 -2

0.496 x 10-2

Node 20

0.745 x 10-2

0.764 x 10-2

0.762 x 10-2

0.822 x 10-2

The investigation was continued with analyses of the variable thickness model.

In this case, results using MARC element type 4 (Hermitian curved shell ele-

ment) were obtained in place of QUAD4 results. Displacement solutions obtained

for nodes 10 and 20 are shown in Table 3.3-V. The tabulated variable thickness

results show the same trends as those exhibited by the constant thickness dis-

placements. In an effort to improve the convergence results, continuity of

stresses/strains across the largest kink angle was destroyed by introducing

duplicate nodes coincident with nodes 6-10. This action had the effect of re-

ducing residuals by about an order of magnitude as is shown on Figure 3.3-10.

The displacements in the x direction at nodes 10 and 20, 0.320 x 10-2 inch

and 0.400 x 10-2 inch respectively, compared favorably with corresponding

results for the continuous stress/strain case (Table 3.3-V).

In summary, the cantilevered vane results showed that, while substantial kink

angles between adjacent shell elements do not cause the MHOST iterative pro-

cedure to produce erroneous results, such angles can slow convergence to the

point that complete stress/strain continuity constraints may have to be re-

laxed on a selective basis in order to achieve acceptable convergence rates.
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Deck/E Iement

MARC/4

HARC/75

MHOST/75

MHOST/75

Table 3.3-V

Displacements for Vartable Thickness Vane Model

Number of

Iterations

0

2O

x-Displacement (inch)
Node 10 Node 20

0.267 x 10-2

0.274 x 10-2

0.266 x 10-2

0.331 x 10-2

0.356 x 10 -2

0.357 x 10-2

0.341 x 10-2

0.415 x 10-2

MAXIMUM ABSOLUTE RESIDUAL
FORCE COMPONENT (LB.)

80.0

oo; o

"°F\
'ooR\
7 k

o
2 4 8 12 15 20 NO. OF ITERATIONS m,..-

Figure 3.3-10 Convergence of Residual Forces
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Transient Response of a Simply Supported Bar

The pinned beam shown on Figure 3.3-11 represents a simple validation case for

the MHOST time integration algorithm (constant average acceleration option).

The beam was modeled using three HHOST shell elements, and was subjected to

the impulsive pressure load shown on the figure. The lateral displacement time

history is compared to a MARC modal solution (Timoshenko beam element model)

on Figure 3.3-12. As the plotted results show, the MHOST solution is in excel-

lent agreement with the MARC results over the complete time range (0.0 to 0.18

L.. ,= I
I_" 72 IN. v t MARC:

seconds).

3 TIMOSHENKO BEAM ELEMENTS

MHOST:
3 SHELL ELEMENTS

S
Y
M

LOAD HISTORY PROPERTIES

LOAD_

(PSi) /

800.0 F

600.0

400.0

200.0

0.002 0.006 0.01 TIME (SEC.)

t - 23.13 IN.

CROSS - SECTIONAL AREA - 14.7 IN2

E-30x 106 PSI

V -0.3

p -7.6754 X104 LB.-SEC 2
IN. 4

Figure 3.3-11 Model and Dynamic Loads for Pinned Beam
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0.2

MID- SPAN _Z (IN.)

MARC MODAL TIMOSHENKO
BEAM SOLUTION

MHOST PLATE MODEL:
A t - 0.00025 SEC.
(1ITERATe)N)

0.002 0.004 0.006

TIME (SEC.)

0.010 0.012 0.014 0.016

Figure 3.3-12 Pinned Beam: Mid-Span Deflection
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Free Vibrations of a Cylindrical Fan Blade

The MHOST free vibrations capability was verified by analyzing the well-known

Lindberg and Olson cylindrical fan blade (Reference 49). The MHOST shell ele-

ment model of the fan blade as well as a tCASTRAN model that employs an 8 node

element (Reference 50) are defined on Figure 3.3-13. The MHOST frequencies for

the first ten modes are compared to NASTRAN and test values in Table 3.3-VI.

Overall, the MHOST frequencies are in good agreement with test values, and re-

present approximately the same level of approximation as the tabulated NASTRAN

results. Macroscopic comparisons between I_OST and experimental mode shapes

are shown on Figure 3.3-14. The MHOST program captures the essential charac-

teristics of all the modes shown on the figure.

_ 12 IN.

--i: ....

IN.

12 IN.

I, Ip

• _ _ v v v w v

P D

|

; _ .. = u = ; C

Ii Ii il ill

r= 24 IN. r= 24 IN.

E = 30 x 106 PSI

1) ,, 0.27

MHOST SHELL t - o.12 IN. NASTRAN
ELEMENT (REFERENCE 50)

p ,, 7.33x 10 -4

( p -SEC.2)
IN.4

Figure 3.3-13 Models of Lindberg and Olson Fan Blade
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Table 3.3-VI

Frequencies for Lindberg and 01son Fan Blade

Mode Test.

Frequencies (Hz)
NASTRAN MHOST

I A 85.6 86.7 87.0
2 S 134.5 139.6 138.9
3 S 259.0 250.3 253.5
4 A 351.0 349.6 355.8
5 S 395.0 407.9 395.9
6 A 531.0 552.5 571.7
7 A 743.0 777.2 788.2
8 S 751.0 759.7 775.0
9 S 790.0 826.2 824.8

i0 A 809.0 920.9 874.3

*S = symmetric
A = anti-symmetric

MODE

Figure

MHOST

I

TEST

3.3-14 Comparisons Between

MHOST TEST MODE

6

8

9

MHOST and Experimental Mode Shapes
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3.3.6.2 Analyses with Subelement Iterations

Cantilever Beam

The cantilever beam shown on Figure 3.3-15 was analyzed using a 2 x 10 global

mesh in conjunction with uniform 2 x 2 subelement meshes. The subelement solu-

tion extracted exact bending stress/strain and displacement values at all

nodes including the interior subelement mesh points.

A global 4 x 20 model of the beam was also analyzed to provide reference

timing information. The computational efforts required for the standard and

subelement approaches are summarized in Table 3.3-VII. It should be noted that

the subelement procedure offers a computational advantage over the global ap-

proach in large-scale applications even though the total computational efforts

listed in Table 3.3-VII do not reflect this fact. Since matrix solution costs

increase by powers of the number of degrees-of-freedom, the reduction in this

cost obtained using the subelement approach in large-scale applications will

more than compensate for the cost increase associated with subelement calcula-

tions which varies linearly with problem size. The differences in matrix solu-

tion costs associated with the subelement and global procedures are apparent

even in the cantilever example as is shown in Table 3.3-VII.

20.0 -I

.._.._ " "-i-''-'--I'''-' _, /'L-'''!'-L-'I'/ ,' ""-',,--,- --,---,--

_-- 1000 LB

-_, 1000 LB

FIGURE NOT TO SCALE

E - 106 PSI

1J= 0.3

t - 1.0 INCH

CANTILEVER BEAM PROBLEM (PLANE STRESS)

Figure 3.3-15 Cantilever Beam Validation Problem

.......... SUBELEMENT MESH
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Table 3.3-VII

Central Processing Unit (CPU) Time for the
Beam Validation Problem

Run A

Run B

2x10 mesh with 2x2 uniform subelement division throughout 66 main

degrees-of-freedom and 360 subelement degrees-of-freedom

4x20 mesh of the standard finite elements 210 degrees-of-freedom

CPU Time (seconds in PRIME 9950)

Operation Run A Run B

Matrix Assembly
Matrix Solution

Residual Calculation

0.803 2.267

0.091 2.290

10.803" 3.906

TOTAL 11.607 8.463

*Including the subelement solution which averages 0.5 sec/global
element.

Plane Stress Problem with a Reentrant Corner

The plane stress problem with a reentrant corner shown on Figure 3.3-16 was

analyzed as a validation case for problems with discontinuities. Related work

at Swansea has indicated that stress fields obtained from the mixed iterative

procedure are oscillatory when stress singularities are present. These numer-

ical difficulties are related to the stability condition of Babuska-Brezzi,

and the possible unstable characteristics of equal order interpolation for

displacement and stress have been pointed out by Oden (Reference 33). The

stress distributions obtained by MHOST after global iteration with continuous

stress fields are shown on Figures 3.3-17 through 3.3-19. Except for a small

amplitude stress oscillation, no significant indication of numerical insta-

bility is observed.

The nature of the discontinuity at the reentrant corner is such that the con-

tinuous stress constraint is excessive. When this constraint is removed, a

more accurate representation of singular behavior at the corner is obtained as

shown on Figure 3.3-20. A further refinement shown on Figure 3.3-21 is ob-

tained by using a 2 x 2 subelement mesh representation in the three elements

at the singular point.
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Figure 3.3-16 Problem Statement for Plane Stress Deformation of a Domain

with a Singularity to Prescribed Displacement
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Figure 3.3-17 Stress Distribution (ax) for L-Shape Domain with Continuous
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Figure 3.3-21 Stress Distribution (ox) for L-Shape Domain with Discon-

tinuous Stress Field and Subelement Mesh
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Inelastic Analvsis of a Plate with a Hole

An elastic-plastic analysis of a plate with a circular hole was performed

using the model shown on Figure 3.3-22. Elements 7, 8, 17, and 18 were divided

into 2 x 2 uniform subelement meshes. The material data used in the analysis

are shown in Table 3.3-VIII. In this problem, an average of 4 to 5 iterations

was required in each subelement to reach convergence with a displacement

tolerance of 0.1. The deformed shape after one increment is plotted on Figure

3.3-23. As shown in Table 3.3-IX, the equivalent plastic strain detected at

the subelement level in element 8 was an order of magnitude larger than the

value observed in the global solution. This result indicates the potential

capability of the subelement approach in nonlinear fracture mechanics appli-

cations.

TOTAL INITIALLOAD= Fo . 1.35 xl0 4 Lbs,

24 23

14

13

It

21

4

1.o"= -- 4.6" -,

Figure 3.3-22 Finite Element Model of a Plate with a Circular Hole
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Table 3,3-VIII

Parameters for the Validation Model
of a Hole in F1nlte Plate

Thickness

Young' s Modul us
Poisson's Ratio

Yield Function

Equivalent S_ress (psi)
3.0 x 10*
3.5 x 104

4.0 x 104

5.0 x 104

6.0 x 104

1.0 inch

3.0 x 107 psi
0.3

Pl astic

Equivalent Strain
0.0
0.5 x 10-2

1.5 x 10 -2

1.0 x 10-1

1.0

Y

HOLE IN PLATE UNDER IN PLANE LOAD

Figure 3.3-23 Deformation After One Increment
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Table 3.3-IX

Solution at Point A by the Global and
Subelement Iterations After Increment One

Total Load F = 1.1 F o

x Displacement (inches)

Von Mi ses Stress (psi)

ox (psi)

Oy (psi)

_xy (psi)

Equivalent Plastic Strain

Gl obal Node

6.5360 x 10-4

3.0003 x 104

-1.9666 x 103

-3.0114 x 104

4.0285 x 103

3.5822 x 10-6

Local Node

6.5360 x 10 -4

3.0185 x 104

-2.7765 x 103

-3.0941 x 104

3.2650 x 103

1.9407 x 10 -4

3.3.7 Three-Dimensional Solid Element Analyses

Burner Blister Specimen

A series of elastic-plastic analyses has been completed for a burner blister

specimen configuration. The blister specimen was modeled as a 45 _ in-plane

wedge with a radius of 1.5 inches, Figures 3.3-24 and 3.3-25. The thickness

for the out-of-plane direction was 0.05 inch and three planes of nodes (each

plane containing 199 nodes) were used through the thickness. The three planes

were designated as bottom plane, mid-plane, and top plane respectively. Roller

in-plane boundary conditions were applied along the horizontal and 45" wedge

boundaries. Out-of-plane boundary conditions prevented rigid body motion.

Eight-riDded three-dimensional brick elements were selected for both the R]OST

and MARC analyses, with two elements used through the out-of-plane thickness

direction. Elastic and plastic material properties corresponded to realistic

burner liner materials. The external loading involved a radially varying tem-

perature distribution, which ranged from 1800_F at the vertex hot spot to

1100"F at the outer radius, Figure 3.3-26. The distribution was based upon

experimental burner temperature measurements, was applied proportionally for

incremental loading, and was linear through the thickness direction.
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VERTEX

0.1 0.5 1.5 (OUTER RADIUS)

Figure 3.3-24 Burner Blister Specimen Model In-Plane General Breakup (Three-
Dimensional)

VERTEX

0.0125 0.0625

Figure 3.3-25 Burner Blister Specimen Model In-Plane Local Vertex-Neighbor-

hood Breakup (Three-Dimensional)
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Figure 3.3-26 Hot Spot Temperature Distribution (Mid-Plane) for Burner Blis-
ter Specimen Model

In addition to a three-dimensional modeling of the burner blister specimen, a

finer-meshed axisymmetric blister specimen model, Figure 3.3-27, was also de-

veloped and run on MARC. The axisymmetric model contained four four-noded ele-

ments through the thickness direction, as well as a mesh breakup near the ver-

tex that was somewhat finer than the 3-D model mesh breakup near the vertex

(compare Figures 3.3-27 and 3.3-25). The results associated with the MARC axi-

symmetric model calculations were taken to be base case numbers, to be used to

judge the accuracy of the MHOST and MARC three-dimensional model calculations.
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Figure 3.3-27 Axisymmetric Burner Blister Model for MARC-Breakup Near Vertex

Agreement of results between the HHOST and MARC three-dimensional model calcu-

lations was very good for most quantities. Typical of this good agreement are

the results shown on Figure 3.3-28, where the Mises plastic strain at the mid-

plane vertex node is plotted from both sets of results. As can be seen from

this figure, the comparison is excellent even at 100 percent load for which

significant plastic strain occurs at the vertex node. Even better agreement

was obtained for the in-plane radial displacements which sometimes showed

three or four figure exact matchup between MHOST and MARC values. It should

also be noted that whenever good agreement occurred between MHOST and MARC

three-dimensional calculations, the corresponding quantity found from the MARC

axisymmetric calculation also agreed very well with both 3-D results.

On the other hand, poor agreement between the MARC and MHOST three-dimensional

calculations was found for the out-of-plane displacement values, in particular

for the blister displacement at the vertex nodes as indicated in Table 3.3-X.
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Figure 3.3-28 Mises Plastic Strain at Mid-Plane Vertex Node

Table 3.3-X

Out-of-Plane Displacement at Mid-Plane Vertex

Node for 100 Percent Loading

MARC AXISYMMETRIC:

MARC 3-D:

MHOST 3-D:

5.0982 x 10-3

1.2473 x 10-3

4.7697 x 10-3
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In general, the MHOST 3-D out-of-plane displacement values were about three or

four times greater than those gtven by the MARC 3-D calculations, but were in

quite good agreement with the MARC axisymetrtc calculations, as indicated in

Table 3.3-X. In fact, results from the MARC axtsymmetrtc case showed good to

excellent agreement with all corresponding HHOST 3-D results for all quanti-

ties.

It was concluded, therefore, that the HHOST code gave good to excellent re-

sults for all quantities in the three-dimensional burner blister specimen

model with two three-dimensional elements through the thickness. In contrast,

two three-dimensional elements through the thickness was not a fine enough

breakup for MARC to generate accurate out-of-plane displacement values. It is

fe]t that a possible cause for this poor accuracy is that the element coarse-

ness through the thickness resulted in too high an out-of-plane stiffness for

the MARC calculational procedure to be able to handle properly. It appears,

therefore, that the HHOST code can handle coarser meshes better than the MARC

code. The primary reasons for this advantage can be found from among the fol-

lowing factors: integrated use of reduced integration element technology,

nodal evaluation of constitutive relationships, and equilibrium (Loubignac)

t terati on.

With regard to computer running times required for MHOST and MARC 3-D model

calculations, MHOST appears to be somewhat faster than MARC for identical

problems, geometries, loadings, etc. Time comparisons between the two programs

are shown in Figure 3.3-29, where 100 percent of the load was applied in one

step (increment) and the number of iterations was varied. The plots here show

the MHOST code to be about 40 percent faster than the MARC code for this par-

ticular problem setup and loading. This type of time savings for MHOST over

MARC (i.e., about 40 percent) is typical of the comparisons that were made,

regardless of whether the loading involved one increment and a number of iter-

ations, or vice-versa, a number of increments (adding up to 100 percent load)

and zero or one iteration per increment.
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From the discussion presented in the preceding paragraphs, it can be concluded

that the MHOST code, when compared against the MARC code, provides significant

accuracy improvement at reduced cost for applications of the blister specimen

type.

NASA Benchmark Notch Specimen

Three-dimensional elastic-plastic analyses of the NASA Benchmark Notch Speci-

men have been performed using the MHOST code. In order to avoid duplication,

the finite element results for this specimen are discussed together with

boundary element method results in Section 3.4.5.7.
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3.3.8 List of Symbols

Alphabetical

Sj_nbol

a

aj

B

C

D

Dijkl

e

E

ER

f

F

fj

G

g

h

J

K

M

N

Description

Acceleration vector

Acceleration vector component

Strain-displacement matrix

Damping matrix

Geometric constant

Material modulus matrix

Fourth order tensor component of material modulus

Nodal strain vector

Young's modulus

Prescribed surface traction vector

Body force vector

Node point force vector

Body force vector component

Grammmatrix for the finite element basis

Gravity acceleration vector

Thickness for plates and shells

Functional

Jacobian matrix for the isoparametric transformation

Displacement stiffness matrix

Lagrangian functional

Mass matrix

Finite element basis function
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Alphabetical

Symbol

n

nj

P

Q

Q'

R

R

S

r

t

tj

U

U

uj

V

V

2j

vj

W

W

X

×j

List of Symbols (continued)

Description

Unit normal vector

Cartesian component of the unit normal

Penal ty matri x

Initial strain terms

Nodal forces generated by initial strains

Radius

Rotation tensor

Nodal stress vector

Radial coordinate for the axisymmetric geometry

Traction vector

Traction vector component

Right stretch tensor

Displacement vector

Displacement vector component

Space for admissible displacement variation

Velocity vector

Vector for BFGS update

Velocity vector component

Lateral deflection

Vector for BFGS update

Position vector

Cartesian component of the position vector
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Greek Symbols

6

cij

_, n,_

g

_., IJ

v

p

o

oij

_ij

f_

Sub- and

Superscripts

e

h

i,j,k,...

I,J,K,...

Li st of Symbol s (continued)

Description

Constants

Kronecker' s del ta

Di spl acement at a given point

Infinitesimal strain tensor

Isoparametrl c coordi hates

Constant

Lame-Navler constants for the isotropic elasticity

Load factor for the arc-length method

Poisson' s ratio

Material density

Stress tensor

Stress tensor component

Deviatoric stress tensor

Deviatoric stress tensor component

Nul I set

Probl em domain

Boundary of the domain

Description

Quantities defined on each element

Finite element approximation

Indices for vector and tensor component (when used as

subscripts); iteration and incrementation counter (when

used as superscripts)

Nodal point counter
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Sub- and

Superscripts

L

MAX

S

S

T (Sub)

T (Super)

0

List of Symbols (continued)

Description

Local subelement mesh

Maximum number

Shear and transverse shear component

Subelement

Tangent

Transpose

Initial quantities
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3.4 BOUNDARYELEMENT METHOD

3.4.1 Overview

It is the goal of the advanced formulation development portion of this program

to develop a computational technique for the solution of linear, nonlinear and

transient problems in gas turbine engine hot section components. This tech-

nique is to be distinct from, and complementary to, the Finite Element Method.

The existence of such a computational tool will enhance the ability to cali-

brate the other codes developed under this contract. In addition, it is to be

expected that different techniques will prove optimal, in terms of efficiency

or accuracy, for particular types of component analysis. Since almost all gen-

era] purpose structural analysis computer programs presently available employ

the displacement finite element method, the new program developed as part of

the advanced formulation development effort can be expected to extend the

ability to perform realistic analyses of hot section components.

During the first year of this program (Task IC), Pratt & Whitney and its sub-

contractor, the State University of New York at Buffalo (SUNY-B), developed a

new general purpose structural analysis program, BEST3D (Boundary Element

Stress Technology), based on the use of the Boundary Element Method (BEM).

During this work, the boundary element method was implemented for very general

three-dimensional geometries, for elastic, inelastic and dynamic stress analy-

sis probl eros.

In the second year of the program (Task IIC), Pratt & Whitney and SUNY-B have

continued the theoretical and numerical development and the computer implemen-

tation of the BEM, making very significant advances in a variety of areas.

Major developments accomplished during Task IIC include:
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l • Incorporation of substructuring capabilitv in the nonlinear BEM

stress analysis.

• Algorithm development, coding and validation of an embedded time

algori thm for elastodynamic problems•

. Development of a method for representing the effects of embedded dis-

continuities without explicit boundary modeling.

• Development and two-dimensional testing of an algorithm for the cal-

culation of the natural frequencies and mode shapes of a structure,

and the preliminary design for incorporating this capability in

BEST3D.

• Significant improvement in the accuracy and efficiency of many of the

numerical algorithms in BEST3D.

. Verification of the nonlinear solution capabilities of BEST3D using

externally generated data.

The second year development effort is discussed in more detail below. Section

3.4.2 updates the results of the BEM literature survey originally conducted

during Task IC. Section 3.4.3 summarizes new developments in the analytical

and numerical formulation of the BEM for elastic, inelastic and dynamic prob-

lems in three dimensions. Modifications to the BEST3D code are discussed in

Section 3.4.4. Validation/verification of BEST3D is discussed in Section 3.4.5.
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3.4.2 Literature Survey Update

During 1984, no boundary element papers have been published that are likely to

cause significant redirection of work in the Inelastic Methods Program. It

appears that the boundary element technology used in BEST3D for multiregion

isotropic and anisotropic elastic stress analyses, multiregion dynamic

(steady-state and transient time domain) analyses and multiregion inelastic

analyses under monotonic and cyclic loading remains at least current with the

publ ished Iiterature.

A comprehensive textbook by Brebbia et al (Reference l) and an advanced mono-

graph edited by Banerjee and Mukherjee (Reference 2) appeared in 1984, and

essentially document the state-of-the-art. Additionally, Ingrafia (Reference

3) described the use of special shape functions for fracture mechanics analy-

sis, along lines originally explored by Cruse and Wilson (Reference 4). Rizzo

et al (Reference 5) described dynamic analysis of some earth structures prob-

lems involving single homogeneous regions using the Fast Fourier Transform.

Brebbia and Nardini (Reference 6) have explored the calculation of natural

frequencies in single region, two-dimensional boundary element analysis.

3.4.3 Formulation Development

3.4.3.1 Summary

Important advances have been made during Task IIC in extending the BEM formu-

lation for three-dimensional stress analysis of gas turbine engine structures.

The most significant formulation advances have been in the area of dynamic

analysis, where a real variable, time embedded technique has been developed,

in the calculation of natural frequencies and mode shapes, in the representa-

tion of multiple embedded discontinuities and in the basic understanding of

numerical algorithms employed in the BEM. These extended or newly developed

formulations are discussed in the subsections below. The basic BEM formulation

is only very briefly reviewed, as full details are available in the First

Annual Status Report (NASA CR-174700).
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3.4.3.2 Linear and Nonlinear Stress Analysis

3.4.3.2.1 Review

By making use of the reciprocal work theorem, the governing differential equa-

tions for a three-dimensional (homogeneous) structure under combined thermal,

mechanical and body force loadings can be converted to an integral equation

written on the surface of the structure. This integral equation is:

j
[Gij t i ui] ds + V_ (Gij fi + _WjT) dv (3.4-1)cij ui = S - Fij

where Wj = Tik j aik, 13 = coefficient of thermal expansion,

Tik j = the stress Oik due to a point force ej,

Gij, Tikj and Fij are defined in the First Annual Status Report

(NASA CR-174700),

and

r
oij = S" [Dij k tk - Sij k uk]ds ÷ (Tijk fk + Mij T) dv (3.4-2)

allows calculation of stresses at any interior point where they are required.

A similar equation for interior displacements can be obtained by setting cij

in equation (3.4-1).
= aij

In a purely elastic problem BEM stress analysis can be carried out entirely on

the boundary of the structure. Once a physically reasonable set of boundary

conditions has been prescribed, equation (3.4-1) can, in principle, be solved

for all of the remaining boundary displacements and tractions.

It is generally impossible to solve equation (3.4-1) exactly for real struc-

tures and loading conditions. Suitable approximations of the boundary geome-

try, displacements and tractions must be used in order to reduce equation

(3.4-1) to a system of algebraic equations. The present version of BEST3D
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models boundary geometry and boundary values of field quantities using linear

and/or quadratic isoparametric shape functions. The surface integrals in equa-

tion (3.4-1) are then evaluated numerically using product Gaussian quadrature

rules. The numerical implementation of the BEM is discussed in detail in text-

books by Banerjee and Butterfield, and by Brebbia as well as in the First

Annual Status Report (NASA CR-174700).

In the case of inelastic analysis, the volume integrals in equation (3.4-I)

cannot be calculated a priori, since they require knowledge of inelastic

strain, which is itself a part of the solution. In this case equations

(3.4-1), (3.4-2) and the inelastic material model can be regarded as a coupled

system of nonlinear equations. In the numerical implementation of the BEM

equation (3.4-2) is used to calculate the stresses at interior points, and the

nonlinear material model is then used to evaluate inelastic strain. Since the

volume integrals of inelastic strain vanish except in regions of nonlinear

material response, approximations of geometry and field quantities are re-

quired only where nonlinearity is expected. In BEST3D volume models utilize

quadratic isoparametric shape functions or simple rectilinear cells. In the

first case the isoparametric shape functions are also used to model inelastic

strain variation. In the second case an exact solution for the uniform initial

strain problem, discussed in Section 3.4.3.2.6, is used.

The remainder of Section 3.4.3.2 discusses significant new developments

carried out during Task IIC.

3.4.3.2.2 Redefinition of Plasticity Formulation

In the First Annual Status Report (NASA CR-174700) the plasticity formulation

was defined with respect to a known distribution of initial strain. It has

been found to be more convenient to define the displacement field in terms of

the initial stresses defined over the volume, so that:

cij ui(x o) : Gij(x,x ° (x) - Fij(X'Xo)Ui (x)dr + v_Bikj(Z'_)_k(Z)dv
(3.4-3)

where
1 I Yi Yi Yk

+

Bikj : - 16_(l-v)-_r [(l-2v) (aikT- ajk T ) - aij r

3YiYjY k

r3 ]
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The stresses at an interior point can be obtained from

.. f , . .o dv + j_jk = [D13k ti - Sijk ui] ds + E1p3k alp .o (3.4-4)
ipjk °ip

where the last term on the right-hand side of equation (3.4-4) is the princi-

pal value. The kernels D and S are defined in Banerjee and Butterfield and

C3

Eipjk = (__l)r _ [C4(6ip 6jk - 6ij 6kp - _ik 6jp - a6jk yiYp) - a6ip YjYk

- av(6ij YkYp + 6ik YjYp + 6jp yiy k + Ikp YiYj ) + a(a+2) yiYjykYp]

C3 = -1/47 (l-v)

c4[ IJipjk = _ [(a 2 - 2) - v(_ 2 4)] _ij 6kp [1 - v(= + 2) 6ip 6jk]

C4 = -1 / (I - v) , a = 3

Equations (3.4-3) and (3.4-4) provide the formal basis for developing the
0

plasticity algorithm. The initial stresses oij defined in equations

(3.4-3) and (3.4-4) include the effects of all inelastic strains (thermal,

plastic and creep). The magnitude of the initial strain, however, is not known

a priori (except for the thermo-elastic problem) and must be determined by

satisfying the constitutive relations.

3.4.3.2.3 Plasticity Solution Sequence

The displacement and stress equations at the boundary (equations 3.4-3 and

3.4-4) and interior points can be assembled to arrive at the system equations

as:
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Ub _b . T b ub + Eb _o(b+J) = 0

ui : Ui _b _ T t ub + Et _o(b+t) (3.4-5)

= Uo _b _ T ° ub + Eo 6o(b+i)

where _ , t , _o are the displacement, traction and initial stress increment

vectors. The superscripts b, i in the above equations indicate reference to

boundary and interior node related equations.

By collecting the known (y) and unknown (x) values of traction and displace-

ment rates and their coefficients together, the above equations can be recast

as:

Ab x =,b ÷Cb = ;b+  ,ob

ui = Ai x ÷ Bi y * Ci 6° = Ai x * _i + _oi (3,4-6)

6 = A° x + B°y + C° .0o = A° x + I_° + I)O°

The algorithms described yield the solution of the system defined by (3.4-6)

together with the constitutive model. This includes complete knowledge of the

initial stress distribution _o within the yielded region. Since _o is not

known a priori for a particular load increment and since the complete system

is nonlinear, an iterative process is employed within each loading stage•

An important feature incorporated in all the iterative algorithms in the pre-

sent work is the utilization of the initial stresses generated by the past

history. In this procedure, the path followed by the previous load increment

is used to extrapolate the initial stresses at the beginning of the current

increment before the iterative operations. This substantially reduces the com-

puter time.
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The incremental algorithm can be described as follows:

(a) Obtain the elastic solution for an arbitrary increment of boundary

loadi ng j) from

• Ab t_x=[ ] -1 b

_i=Ai_+_i

and

_=AOx + a

(b) Scale the elastic solution such that the highest stressed node is at

yield.

(c) Impose a small load increment y (usually about five percent of the

yield load) and an initially estimated value &o based on the pre-

viously generated history of initial stress and evaluate

x = [Ab] -1 I)b + I)°b

and

_=A°x+ _°+_oo

It should be noted that at the first load step, the initial stresses are

zero since no prior plastic history exists.

(d) Accumulate all incremental quantities computed in the previous step.

(e) Evaluate the current constitutive matrix using the new history and

incremental values and calculate the initial stress rates and accumu-

late them.
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(f) Return to step (c) and apply the next load step with non-zero _o

if the current increments of tnittal stresses are less than a suit-

able error norm (normally 0.005 times the yield stress).

(g) Return to step (c) and compute the incremental quantities due to ini-

tial stress only (i.e., boundary loading change is zero).

If the number of iterations executed is greater than a specified limiting

value (usually 50), the system is assumed to have reached the state of col-

lapse.

The plastic solution algorithm is summarized in Figure 3.4-1.

SOLVE ELASTIC PROBLEM
E

SCALE TO YIELD

APPLY LOAD INCREMENT
ASSUME _r • -, 0

SOLVE SYSTEM EQUATION
CALCULATE 0",1-

NO
UPDATE

""-- "IIO" I1< ( LOAD VECTOR

YES

LOAD
REVERSAL?

YES

APPLY LOAD INCREMENT

EXTRAPOLATE 0 "e

Figure 3.4-I Plasticity Solution Sequence
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3;4.3.2.4 Inelastic Material Models

The three constitutive models which are presently included in BEST3D are:

(a) Von Mises model with isotropic variable hardening

(b) Two-surface model for cyclic plasticity

(c) Combined plasticity and creep model of Walker.

Of these, the models (a) and (c) are described in the earlier sections of this

report. The two-surface model used here is similar to that described by Krieg

except that a new form of hardening function has been introduced.

In the two-surface model, it is assumed that during loading in the plastic

state the stress state remains in contact with the inner yield surface, known

as the loading surface. The outer surface, known as the limiting or bounding

surface, is allowed to follow hardening rules identical to those of elastic,

linearly hardening isotropic or kinematic plastic theory.

The hardening of the loading surface depends on a distance vector that joins

the stress state to the bounding surface such that the system is very stiff

when the stress state is remote from the bounding surface and assumes essen-

tially the hardening values of the bounding surface when the stress state is

in the proximity of this surface. This variation of stiffness from large to

small asymptotic values allows a smooth transition while the stress state

moves through three distinct zones: an elastic region which is associated with

recoverable strains when the stress state is within the loading surface, a

plastic region where the system adopts the stiffness of the bounding surface,

and an in-between metaelastic region when the stress state is on the loading

surface but inside the bounding surface.
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The behavtor tn the elasttc and plasttc regton ts governed by the stress

strain relations:

do = D e

De (aF _ (aF _T De
. _a-T_' _-T_o' .

Hp + He
de (3.4-7)

where o* is the reference point on the boundary surface corresponding to the

stress point £ (as defined by Mroz in 1967). The function F used in this de-

velopment is the standard yield function of Von Mises.

In equation (3.4-7) the terms Hp and He are defined as:

I_F _T De (_F
He = _-_i ~ "_-'_l

N

and

m

Hp = h(_°- )n , h, n and Ore f are material parameters
Vref

is the distance (in six-dimensional stress space) between the current

stress point and the last elastic location of the loading surface

center.

Any unloading during the deformation is indicated by

dL = nT do < 0 where n is the unit normal at o*

~ (aF _ ~ )T ~ ]1/2n = Ba-_-' / [(BF/_o* (_F/ao*)

which leads to a purely elastic response until the loading path touches the

loading surface when once again a new reference point o* is established.
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3.4.3.2.5 Mu!ti-GMR (Generic Modeling Region) Plasticity Algorithm

In the case of a multiregion problem, the system matrices for the boundary

nodes for each region are organized as:

Ax + By + Co° = 0

or Ax = -(By + CoO ) = b (3.4-8)

Equation (3.4-8) is identical in nature to the corresponding system equations

for the multi-GMR elastic problem and therefore can be used in the multiregion

assembly and solution scheme without any change. The iterative process used

does require an efficient process for the repeated solution of the algebraic

system (3.4-8).

3.4.3.2.6 Embedded Hot Spots and Discontinuities

An exact solution for the case of uniform initial stress or initial strain in

a rectilinear cell of dimensions a x b x c has been derived, based on the

stress solution in Reference 7. This solution can be expressed as:

o (x,() O°k(X)uj(() = Bik j
(3.4-9)

0 X
and Ojl(_) = Mijkl (x,_) Oik( )

(3.4-10)

It is important to note the following features of the above equations for dis-

placements and stresses:

(a) there is no integration required

(b) equations (3.4-9) and (3.4-10) can be added directly to the respec-

tive boundary integral equations for the displacements at the bound-

ary and interior points and for the stresses at interior points.
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For a hot spot equations (3.4-9) and (3.4-10) stmpltfy to:

ui(_) = Hi(x,_) T(x) (3.4-11)

oij(6) = Jij(x,6) T(x) (3.4-12)

where T(x) is the temperature of a hot spot of volume a x b x c. In the pre-

sence of hot spots equation (3.4-8) Is modified to

Ax + By + Ca ° + HT = 0 (3,4-13a)

or Ax = -(By + Co O + HT) = b (3.4-13b)

Equation (3.4-13) can be formed for each generic modeling region (GMR) and

used in the solution. Discontinuities are allowed without having any formal

discretization by simply assuming that the stresses within the volume occupied

by it are zero. Thus, for example, in an elastic system if we introduce an

arbitrary initial stress system 4° within the discontinuities, then the

boundary displacement equations and the interior stress equations at a point

within a discontinuity can be written as:

Ax + By + Coo = 0 (3.4-14a)

o = 0 = A°x + B°y + Mo o (3.4-14b)

By eliminating oo between equations (3.4-14a) and (3.4-14b),

Ax + By - cH-l(A°x + BOy) = 0

or (A - CM-1A °) x = (CM-IB ° - B) y

or Ax = b (3.4-15)
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It should be noted that displacements and stresses near the void change sig-

nificantly as a result of its presence. This is due to the fact that both the

boundary solution (_,Z) and the initial stress (o O) occur in both equations

(3.4-14a) and (3.4-14b).

3.4.3.2.7 Anisotropic Elastic Materials

The ability to perform stress analysis for materials whose elastic behavior is

anisotropic is of considerable importance in the study of hot section compo-

nents. Such anisotropy can occur in three ways:

(1) Because processing (such as rolling or forging) induces anisotropic

behavior in an originally isotropic alloy.

(2) Because cast components are subjected to a cooling sequence designed

to produce an anisotropic (single crystal or transversely isotropic

alloy).

(3) Because a material can exhibit elastic anisotropy due to prior non-

linear deformation.

The application of the boundary element method to such materials requires a

number of modifications. In particular, the following items require attention:

(1) The point load solution for the (generally oriented) anisotropic ma-

terial must be available analytically and calculable numerically.

(2) Modifications must be made to the surface stress calculation.

(3) New particular integrals for centrifugal body forces are required.

Substantial progress was made during Task IIC in extending BEST3D to include

anisotropic materials.
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It has long been known that the point load solution for a general anisotroplc

material can be represented in terms of a llne integral,

= 1 _K -1 (4) ds
Uij (x - y) 812 Ix-Yl ij

(3.4-16)

where,

Kij(_) = Cijkm _k _m

Cijkm = elastic constants

and the integration path lies on the unit sphere and is perpendicular to the

vector (_-y).

In an earlier program (Reference 8), a technique was developed to tabulate the

point load functions for directionally solidified (transversely isotropic) and

eutectic (single crystal) materials. The tabulated results were then numeri-

cally interpolated within a boundary element method code whenever kernel func-

tion values were required. It was found that this method allowed accurate

solution of stress analysis problems for both material types. The numerical

evaluation of the kernel function was, however, considerably more expensive

than the evaluation of the isotropic Kelvin solution, and led to an increase

in solution time of about 100 percent.

It is not known for exactly what forms of anisotropy equation (3.4-16) has a

closed form solution. A condition for the existence of such a solution based

on the root structure of a sixth degree polynomial involving the elastic con-

stants has been conjectured (Reference g), but not yet published. At present

the only known closed form solutions are those for the isotropic (Kelvin solu-

tion) and transversely isotropic cases.

The transversely isotropic solution (Reference 10) was derived using stress

functions involving complex variables. The original formulation was reviewed

and considerably simplified before incorporation in BEST3D. In particular, the

general form of Reference 10 includes within it a number of special cases,
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only one of which is relevant to directionally solidified alloys presently in

use in gas turbine engines. This fact was used to reduce significantly the

amount of calculation required.

The case of the single crystal material must still be handled using an approx-

imate representation of equation (3.4-16). New methods for this approximation,

requiring less storage and calculation than the technique reported in Refer-

ence 8 are being developed as part of Tasks IVC and VC.

In Task IC the effect of a centrifugal load on an isotropic material was eval-

uated using a particular solution of the equilibrium equations. The particular

solution has now been generalized for an arbitrary anisotropic material. If a

body rotates about an axis passing through an origin, then the equilibrium

equations are:

Tij,j = fi (3.4-17)

where

f = (p2X, p Zy, 0)

p = density

= speed of rotation.

For simplicity in the presentation, the axis of rotation has been taken to be

the z-axis. The problem can always be transformed to this case within the

code. Such a transformation requires a corresponding transformation of the

Cij matrix, which can then become a full, symmetric matrix, even for trans-

versely isotropic or single crystal materials.

By analogy with the known particular solution for the isotropic case, the dis-

placements of the anisotropic particular solution are assumed to have cubic

variation in the Cartesian coordinates, for example:

U1 = AlXl 3 + A2x12x2 2 + A3XlX3 2 (3.4-18)
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where the coefficients are to be determined. Differentiation of (3.4-18)

allows the determination of the strains (quadratic functions of the coordi-

nates). The stresses are then determined, using the transformed Hooke's law,

and a further differentiation allows the evaluation of the left-hand side of

(3.4-17) in terms of the undetermined coefficients. Equation (3.4-17) is lin-

ear in the Cartesian coordinates, and must be satisfied for an arbitrary

choice of coordinates. This condition leads to a set of nine linear equations

in the nine undetermined coefficients. This determination of coefficients is

done only once for each subregion within a multiregion structure. Once the co-

efficients in (3.4-17) have been determined, the anisotropic particular solu-

tion is used in exactly the same manner as the isotropic solution.

3.4.3.3 Transient and Dynamic Stress Analysis

3.4.3.3.1 Review

One of the goals of the advanced formulation development portion of the in-

elastic methods program is the development of a three-dimensional boundary

element capability for transient and dynamic analysis. Several different prob-

lem types are of interest in the dynamic and transient analysis of gas turbine

engine hot section components. The primary areas of interest are:

(1) Determination of natural frequencies, and corresponding mode shapes,

for geometrically complex structures.

(2) Evaluation of the response of a structure to a periodic loading (par-

ticularly near a natural frequency).

(3) Determination of the time history of the response to a transient,

nonperiodic loading.

The first two problem types are related primarily to the avoidance of struc-

tural problems due to forced vibration. The final type of analysis is normally

used to predict the effect of unusual, and potentially very damaging, events

such as impact by foreign objects.
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During Task IC, the problem of dynamic/transient response was attacked by

applying the boundary element method (BEM) to a transformed (Laplace or

Fourier) form of the governing differential equations. Since a point load

solution exists for the transformed equations, the overall framework of the

static elastic solution could also be employed for the solution of dynamic/

transient problems. The version of BEST3D delivered at the end of Task IC in-

cluded the capability for this transform domain solution. The proper execution

and accuracy of this approach was demonstrated using a number of test prob-

lems. The analytical and numerical development of this capability are dis-

cussed in considerable detail in the First Annual Status Report (NASA

CR-174700).

While the transform approach is capable of providing accurate solutions to

dynamic/transient problems, it suffers from serious defects as a practical

analysis method for complex structures. The most serious of these are:

(I) Since the Laplace/Fourier transform casts the entire problem in the

complex domain, the storage and computer time requirements are con-

siderably increased. Typically, the solution for a single value of

the transform parameter will cost two to four times a single static

analysis for the same boundary mesh.

(2) Any problem with nonperiodic loads must be solved by taking trans-

forms of the loads, solving the transformed BEM problem for multiple

values of the transform parameter, and then numerically inverting to

reconstruct the time domain solution. Since the transform parameter

is embedded nonlinearly in the point load solution, the BEM solution

for each transform parameter value requires a complete reconstruction

of the system equations, leading to extremely long computing times.

(3) Since the frequency is involved nonlinearly, natural frequencies can

be determined only through some form of a search procedure, a very

expensive technique.
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It was clear that, while the transform/complex variable method did solve the

mathematical problem, new techniques would be required for a practical exten-

sion of the BEM method to dynamic and transient problems. Very significant

progress has been made in this area during Task llC. In particular:

(1) A real variable technique for the calculation of natural frequencies

and mode shapes, originally developed for single region, two-dimen-

sional analysis has been significantly improved, and tested in a two-

dimensional BEH program. An extension of the method to multiregion

three-dimensional problems has been developed.

(2) A real variable, time embedded formulation for the transient elastic

problem has been developed and implemented in BEST3D.

These developments are discussed in the following sections.

3.4.3.3.2 Calculations of Natural Frequencies and Mode Shapes

The governing differential equation is

)2u i _2uj

(X + _) BXiBXj + _ Bxiaxi + p_2Uj = 0

which can be written in operator notation as

L(uj) + p_2Uj = 0 (3.4-19)

The solution can be formally represented as the sum of a complementary func-

tion wj satisfying

L(wj) = 0 (3.4-20)

and a particular integral vj satisfying

L(vj) + p_2Uj = 0
(3.4-21)
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This equation, however, still contains the unknown displacement field Uj=

which must be eliminated by a suitable approximation. Representing uj as

uj(x) = m=lZ Cjk(X,E m) dk(_ m) (3.4-22)

m
where Cjk is a function (like a kernel function) and _k are a family of

known functions, equation (3.4-21) can be modified to give

L(vj) + p,2 _ Cjk(x,_m) _k(_m) = 0 (3.4-23)
m=l

The function Cjk(X,6 m) is then chosen as

Cjk(x,_m) = A _jk (1 - rm/A) (3.4-24)

where A is a constant and rm is the distance between a boundary point and a

set of reference points m on the boundary or in the interior.

A particular integral can then be obtained in the form

vj(x) = p 2 _ Djk(x,_m) _(_m) (3.4-25)
m=l

to satisfy equation (3.4-23). For the boundary points, the particular integral

can be expressed as

v = p 2 D _ (3.4-26)

Once the displacement field due to the particular integral is known, the sur-

face traction due to this displacement field can be expressed as

tv = p2 T
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The final system of equations for the etgenvalue problem can be then con-

structed using the particular solution (3.4-26) and the standard boundary ele-

ment formulation as:

Gt - Fu = pu2 [G T 16 - F D 15] = pu 2 [G T - F D] 16 (3.4-27)

can be eliminated from equation (3.4-27) by invoking the matrix form of

equation (3.4-22), i.e.,

u = C 16 or 16 = C-1 u (3,4-28)

Substituting (3.4-28) in (3.4-27), leads to:

Gt - Fu = 0 2 [GT - FD] C-1 u = p 2 M u (3.4-29)

By incorporating the known and unknown boundary values, equation (3.4-29) can

be recast into:

Ax + p 2 Bx = 0 (3.4-30)

where x is the vector of unknown boundary displacements and tractions, and

and B are two nonsymetric fully populated matrices. It should be noted that

the matrix A is identical to the system matrix of an ordinary elastic problem.

3.4.3.3.3 Time Embedded Transient Dynamic Formulation

The boundary integral formulation at boundary point _ for a general transient

elastodynamic problem is given by

[aij - cij] uj(_,t) = S_ [Gij*t i - Fij*u i] ds(x) (3.4-31)

where
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t

F..*u.13I = f Fij(x't;_'_) ui(x'r) dr
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are Riemann convolution integrals where the body has been assumed to have been

excited from rest. The functions Gij and Fij, which represent the dis-
placements and surface tractions at a point (x,t) due to a unit force vector

acting at a point _ at a time _ within a three-dimensional solid of infinite

extent, are analytically too complex to reproduce here (see Banerjee and

Butterfield).

Equation (3.4-31) represents an exact formulation involving integrations over

the surface as well as the time history. Equation (3.4-31) is an implicit time

domain formulation since the displacements at a time t are calculated taking

account of the history of surface tractions and displacements up to and in-

cluding the time t. Therefore, if grossly simplified assumptions are not made

in the time variations of quantities, the stability problems encountered in

the finite difference and the finite element methods should not arise.

If the response at a time t is to be determined and the time domain has been

represented by N nodes (with the node I at time t = 0 and the node N at time

t), equation (3.4-31) can be rewritten as

[aij - cij] uj((,t N) - S s_[Gij ti - Fij ui] ds

tN_l

tN_l

f s_[Gij ti - Fij ui] ds dT
0

t2 t3

tl=o t2

(3.4-32)

tN_l

S _ [***] ds d'r
tN_ 2

where [***] denotes [Gij ti - Fij ui].
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It is of interest to note that equation (3.4-32), like equation (3.4-31), is

still an exact formulation of the problem since no approximation has yet been

introduced.

By integrating analytically over the time intervals and introducing a spatial

discretization in the usual manner, (3.4-32) can be expressed as

Ax(t) = By(t) - Z [A N xN - BN yN] (3.4-33)

where the terms involved in the indicated sum include the effects of past

dynamic excitation history on the boundary (i.e., from times t = 0 to t =

tN_ I).

If the time steps are kept constant, the left-hand side of the system equation

needs to be generated only once, while the right-hand side is newly calculated

for each time step, up to a maximum time. After this maximum time is reached

no further integration is required, no matter how many time steps are taken.

The maximum time can be calculated based on the wave speeds of the material

and the dimensions of the structure. Equation (3.4-33) can be written formally

for each generic modeling region (GMR) as:

Ax(t) = b(t) (3.4-34)

which can be assembled for each GMR and solved for a multi-GMR problem in the

usual manner.

3.4.4 Computer Program Development

3.4.4.1 Introduction

The computer program BEST3D was developed during Task IC to provide a tool for

applying the three-dimensional boundary element method (8EM) to the elastic,

inelastic and dynamic structural analysis of gas turbine engine hot section

components.
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The program, described in detail in the First Annual Status Report (NASA CR-

174700), was designed to accommodate structures with very general geometry and

loading. Further, it was clear that additional capabilities would be developed

for BEST3D over a period of several years. For this reason the program was de-

signed so that the anticipated capabilities could be incorporated within the

original framework and data structure of BEST3D, without requiring major re-

coding of already existing capabilities.

During Task IIC, a number of new and enhanced capabilities were developed and

installed in BEST3D. The basic structure of the program remains, however, very

similar to that of the original version. The major changes and additions made

to the code during Task IIC are described in the following sections. A full

description of BEST3D may be found in the First Annual Status Report.

Finally, it should be noted that development of BEST3D is carried out at Pratt

Whitney on an IBM 3084, in both batch and interactive modes, and on an

HP9000 minicomputer at SUNY-B. The program is installed on the CRAY computer

at NASA-Lewis Research Center. It can therefore be anticipated that BEST3D can

be installed, with relatively little difficulty, on most commonly available

computer systems.

3.4.4.2 Global Program Structure

The major changes in the overall structure of BEST3D are:

(1) The incorporation of a branch for the time embedded transient solu-

tion.

(2) Deletion of the complex variable option for transient analysis. The

capability for complex variable analysis of forced response at a

given frequency has been retained.

(3) A branch has been designed for natural frequency/mode shape calcula-

tions, and will be incorporated as part of Task IVC.
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The overall structure of BEST3D at the end of Task IIC is shown In Figure

3.4-2. The program consists of a common input section, followed by three

branches, for static, forced response and transient analysis. The static

analysis branch Is the model for the entire code, since the other branches

largely employ generalized forms of the same algorlthms used in the static

analysls. The branch designed for natural frequency/mode shape calculatlon is

actually part of the static analysis loop.

The transient and natural frequency/mode shape branches will be discussed

separately. Other modifications, not visible at the level of the overall pro-

gram structure (particularly in the plasticity analysis), will also be de-

scribed.

3.4.4.3 Program Input

The input to BEST3D is essentially unchanged. The discussion contained in the

First Annual Status Report (NASA CR-174700) remains accurate. In particular,

the library of surface elements has not been changed during Task IIC. The in-

put changes made during Task IIC include:

(i) Very minor changes to provide the time step definition required for

the time embedded transient analysis.

(2) Simplification of the input used to describe nonlinear material

models.

(3) Inclusion of flags and (when required) additional input for embedded

discontinuities, hot spots and rectilinear volume cells.

Program input is fully described in the BEST3D Users' Manual.
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3.4.4.4 Surface Integral CalculatiO_

The most time consuming portion of an elastic or elastodynamic analysls is the

numerical evaluation of surface integrals. BEST3D uses product Gaussian quad-

rature rules to calculate these integrals. Considerable improvement has been

made during Task IIC in the efficiency and accuracy of these calculations. In

addition, a fundamental difference between surface integration in the static

and in the transient analyses has been clarified.

3.4.4.4.1 Integration in the Static Case

In the original version of BEST3D, 4 x 4 product Gauss rules were used for all

of the nonsingular surface integral calculations. Error estimates based on the

one-dimensional estimates of Stroud and Secrest (Reference 11) were used to

estimate truncation error in the integration. In the event that the requested

error tolerance could not be met over the full element, a weighted rectangular

subdivision of the element was used. During Task IIC, two things became clear:

(i) A very large proportion of the time spent in numerical surface inte-

gration was used in 'near singular' integrations, that is, cases in

which the source point was very close to, but not on, the element

being integrated.

(2) The (analytically derived) error estimates could sometimes be anti-

conservative for low integration orders. They also tended to under-

estimate the benefit of increased integration order.

Based on these observations, studies were begun to improve the error estimates

for the Gaussian quadrature. The objectives were first to develop more uni-

formly accurate error estimates and then to employ these new estimates to re-

duce the computational effort required to carry out the numerical surface in-

tegration.
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The new error estimates were developed by:

(1) Noting that the error in the two-dimensional integration can be ex-

pressed in terms of appropriate one-dimensional error estimates.

(2) Carrying out the integration of traction kernel-shape function pro-

ducts over a variety of randomly oriented source point-line segment

pairs.

(3) Fitting the results of these numerical experiments to a functional

form based on the analytical error estimates and using statistical

techniques to adjust the error equation so that the probability of

exceeding the input error tolerance is less than 0.001.

Comparison of the new and old error estimates led to several interesting con-

clusions:

(I) Higher order Gauss rules were found to be considerably more effective

than previously thought. As a result, the library of integration

rules in BEST3D was expanded to include orders two through thirteen,

inclusive. This allows many more source point-element pairs to be in-

tegrated without subdivision.

(2) The ability to estimate error more accurately has allowed creation of

a more effective algorithm for element subdivision. The original sub-

division algorithm always performed a rectangular subdivision, using

a 4 x 4 Gauss rule on each subelement. The new algorithm, in the most

general case, uses a single central subelement surrounded by rings,

each containing at most four subelements (Figure 3.4-3). The order of

integration on each subelement, in each direction, is independently

set to meet the requested tolerance.
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Figure 3.4-3 Subdivision Strategy for Nonsingular Surface Integration

The incorporation of the revised error estimate and subdivision algorithm in

BEST3D has led to a reduction in computing time averaging 35 percent for elas-

tic analyses, relative to the original version of the code. In addition, solu-

tion accuracy is now much more closely related to the input error tolerance.

3.4.4.4.2 Surface Integration in the Transient Algorithm

The development of the embedded time algorithm for transient elastic analysis

during Task IIC has led to a greatly improved understanding of fundamental nu-

merical differences between the static and dynamic cases. In the static case

it was found that improvement in integration accuracy and efficiency could be

obtained by incorporating higher order Gaussian quadrature rules in BEST3D. It

was originally anticipated that a similar improvement would result from incor-

porating higher order rules in the transient branch of the code. It was found,

however, that the introduction of the higher order rules led to greatly in-

creased run times with little improvement in accuracy.
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Further study clarified the fundamental difference involved. In the static

case the integrands in all of the nonsingular surface integrals are infinitely

differentiable and solution accuracy can, therefore, always be improved by the

use of increased integration order. In the time embedded case, however, the

point load solutions are only continuous. Physically this corresponds to the

fact that the disturbance due to an impulse applied to a given time and spa-

tial location is nonzero, at some later time, in only a finite portion of

space. This means that the kernel function may be nonzero over only part of a

given surface element. While the integrand is infinitely differentiable within

both the zero and nonzero regions considered separately, its overall contin-

uity over the entire element is only CO . The use of higher order quadrature

rules is, therefore, of little use in improving accuracy.

Based on these observations, a revised integration strategy was adopted for

the transient branch of BEST3D. The surface elements are subdivided into a

relatively large number of subelements, and relatively low (usually 2nd or

3rd) order quadrature rules are used over each subelement. This has led to

much improved accuracy in the transient analysis.

3.4.4.5 Volume Integrals

No additional changes were introduced to the volume integration scheme de-

scribed in First Annual Status Report (NASA CR-174700).

3.4.4.6 System Matrix Assembly for Multiregion Plasticity

For the single region inelastic problem the system equation can be expressed

as:

Ax=b

where b contains the total effects of the boundary loading as well as the non-

linearity. Since this final system matrix is algebraically identical to that

for a single region elastic problem, the multi-GMR (generic modeling region)

plasticity problem can use the same code for the assembly of the multi-GMR

system equations.
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3.4.4.7 System Equation Solutton

The solution of the system equations is essentially unchanged from the tnittal

version of BEST3D. The only major change was provision of a capability for

more efficient solution process for problems involving multtple loads. This

was primarily required for efficiency in inelastic analyses.

3.4.4.8 Inelastic Solution Process for a Multi-GMR (Generic Modeling Region)

Problem

The inelastic solution algorithm has been developed in such a manner that the

existing coding for the multiregion elastic problems is utilized without modi-

fication. This essentially requires that the system matrix A and the right-

hand side b be individually formed for each GMR and supplied to the solver for

assembly and solution. The process of determining b of course requires the

initial volume integration of a number of algebraically complex kernels as

well as the definition of the inelastic states via the various constitutive

models. This requires multiple solutions of the same system equations to

satisfy the state dependent constitutive equations at all boundary and in-

terior nodal points of cells.

3.4.5 Validation/Verification

3.4.5.1 Summary

During Task IIC, significant new capabilities were added to BEST3D. The vali-

dation and evaluation of these new capabilities and the continuing verifica-

tion of BEST3D is discussed in the subsections which follow. Attention in this

report is directed particularly to the validation and verification of the non-

linear analysis capability and to the evaluation of the time embedded dynamic

formulation.
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BEST3D's ability to represent properly complex geometries and boundary condi-

tions and to carry out accurately elastic stress analysis. Many of these test

cases were executed again during Task llC in order to verify the continuing

correct operation of already existing capabilities. These test cases were dis-

cussed in the First Annual Status Report (NASA CR-174700), and are not dis-

cussed further in this report unless they have been modified to demonstrate a

newly implemented capability.

3.4.5.2 Validation of Elastic Capabilities

Two major modifications were made to the elastic capabilities of BEST3D during

Task IIC. First, the closed form point load solution for a transversely iso-

tropic material was recast in a computationally efficient form and coded.

Additionally, the required modifications to allow calculation of elastic

stresses and strains at boundary nodes and to account for centrifugally loaded

anisotropic materials were carried out. Second, a new error estimate for non-

singular surface integration and a more efficient subdivision algorithm based

on this estimate were coded and incorporated in BEST3D. The validation of

these capabilities is discussed below.

Transversely Isotropic Cube in Tension

A unit cube was modeled using six linear surface elements, one for each face

of the cube. The beam was loaded along the x-axis, parallel to one of the

secondary material axes. The axis of isotropy was aligned with the z-axis. The

displacements and stresses from the BEST3D analysis are compared to the exact

solution in the table below.

BEST3D Exact

Ux - elongation

U - Poisson contraction
Y

Uz - Poisson contraction

a x

All other stresses

.0010003 in. .0010003 in.

-.00014321 -.00014318

°.0050946 -.00050942

21201 psi 21200 psi

0 <1
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It is clear that the boundary element method (BEM) results are essentially

exact, validating the correct operation of the antsotroptc capability. The

analysis time for the transversely isotroptc case is approximately 22 percent

higher than that for the isotroptc case. This is due to the fact that the

transversely isotropic point load solution is computationally much more com-

plex than the isotropic solution.

The same geometry was also analyzed using two GMRs (generic modeling regions)

in order to demonstrate the correct operation of the multi-GMR capability for

anisotropic materials.

Validation of Surface Integration Algorithm

The new surface integration algorithm was evaluated using the slab shown in

Figure 3.4-4. Six boundary elements were used to model the slab. Although geo-

metrically simple, the problem fully exercises the integration algorithm be-

cause of the large variation in the ratio of element size to the source point

- element distance.

Figure 3.4-4 Test Geometry for Surface Integration Algorithm
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The variation of solution error (measured in terms of the reactions at the re-

strained end of the slab) with the allowable relative error in the numerical

integration is shown in Figure 3.4-5. It is clear that the solution error is

very directly related to the integration tolerance specified, which was not

the case with the estimates used in the original version of BEST3D. As shown

in Figure 3.4-6, it is also clear that the computational effort required to

achieve a given level of solution accuracy grows very rapidly if very small

tolerances are imposed. For this reason a default tolerance was set which

attempts to optimize the relationship between accuracy and cost.
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Figure 3.4-5 Solution Error Vs. Integration Tolerance
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Figure 3.4-6 Computational Effort Vs. Integration Tolerance

3.4.5.3 Multi-region Nonlinear Analysis

The multi-GMR nonlinear capability of BEST3D has been evaluated using an ex-

tensive set of analyses of pressurized thick shells and disks. The results of

these very demanding analyses, involving large-scale plasticity, were used

both to validate the multi-GMR plasticity capability and to develop an under-

standing of proper volume cell definition. The problems were run using an

elastic-perfectly plastic material model and plane strain boundary conditions

in order to allow comparison to an analytical solution.
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Thick Cylinder

The first problem discussed is that of a thick cylinder (outer radius/inner

radius = 2) subject to steadily increasing internal pressure. A 22.5 ° sector

of the cylinder was modeled (Figure 3.4-7). Two boundary and volume discreti-

zations, employing quadratic variation, were used. For both meshes the analy-

sis was carried to collapse, that is, to the load at which BEST3D could no

longer converge to a solution.

MESH 1

to IlOtJNOAN_ I_.[MCNTI
2 VOC.UM¢ GCUJ

lIB IIOUNOARY ¢II.I_MI[NT$

• VOI.UMI[ ¢[t.l.S

Figure 3.4-7 BEST3D Models for Thick Cylinder

The normalized load - deflection response of the cylinder is shown in Figure

3.4-8. Even Mesh 1, with only two volume cells gives a good representation of

the solution, while Mesh 2 converges and gives an accurate displacement value

up to 92 percent of the theoretical collapse load. The BEST3D results for the

stress variation in the cylinder are also very accurate, as shown in Figure

3.4-9.
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region models (with the interface located at a radius of 1.5a). The results

were identical. It should also be noted that, in these analyses, the boundary

elements and volume cells were equally spaced in the radial direction. Experi-

ence in other problems indicates that convergence even closer to the theoreti-

cal collapse load can be achieved by weighting the volume cells towards the

inner radius of the cylinder.

Oi sk

The second problem is that of a disk (outer radius/inner radius = 5) subject

to pressure at the inner radius. This geometry is typical of that encountered

in high-pressure turbine disks. Experience with the cylinder analyses, dis-

cussed above, indicated that at least four volume cells would be required for

this analysis. It was also expected that an appropriate weighting of the cell

discretization would prove desirable. The three meshes used (Figure 3.4-10)

all consist of twenty quadratic boundary elements (including the interface

elements) and four volume cells.

Figure 3.4-10 BEST3D Models for Inelastic Analysis of Disk
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As anticipated, the weighting of the volume cells toward the inner radius

leads to increasingly good agreement of the BEST3D results with the analytical

solution (Figure 3.4-II). It is clear that more volume cells would be required

to carry the analysis to collapse. In practice this would not be needed, since

plastic deformation is nomally limited to the inner 20 percent to 30 percent

of a disk.

It is clear (Figure 3.4-12) that all three meshes provide an accurate elastic

solution. It is, therefore, of considerable interest to study the optimization

of the volume discretization for a fixed boundary model. This study is now

being conducted.

The analysis of the disk was repeated using a single region with cyclic bound-

ary conditions. The results were unchanged from those discussed above.
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3.4.5.4 Application of Exact Initial Strain Solution

The exact solution for the stress and displacement due to a uniform state of

initial strain (or stress) in a rectangular parallelpiped (discussed in Sec-

tion 3) has been exploited in three different areas. A test case for one of

these applications is discussed below.
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The capability to include the effects of embedded holes without explicit mo-

deling has been incorporated in BEST3D. Up to ten such discontinuities may be

included in each generic modeling region (GMR). In order to evaluate the ef-

fectiveness of this technique, for both elastic and plastic analysis, a test

problem was defined in which a slot wlth rounded ends is embedded in a tension

strip (Figure 3.4-13). In the BEST3D analysis the slot is represented as a

rectilinear cell, without explicit modeling.

The BEST3D elastic results, for the stress variation between the free surface

and the slot surface, are compared with a plane strain solution (using modeled

slots) in Figure 3.4-14. The stresses show good agreement except near the slot

surface, where the actual surface geometry of the slot becomes important.

O.O

0.4

O.|

LO

-L|

°O.,

°O.O

° 1.0

¥
I

l I l !. i i

I
!
!

• !

I
I

I
.mm I h

I I I I I I I I I
" O. O m O. _ _O O'_ O'_

Figure 3.4-13 Constant Thickness Plate With Through Thickness Slot

168



i I I I I ' I I

TS3"S_ 0

].Ot_ _ 2D I(lq - SLOT MODELLED -
I

( ,
I!,0 -

|

1,S -

_1.0 0

O,S .

o. I I I I I I I I
0.| 0.3 0.4

A ysI.
o.$

A'

Figure 3.4-14 Stress Variation in Plate With Slot

3.4.5.5 Embedded Time Dynamic Analysis

Explosion in a Spherical Cavity,

The time embedded transient solution was exhaustively tested using the problem

of a spherical cavity in an elastic space, subjected to a suddenly applied

pressure load. Three boundary meshes (Figure 3.4-15) were used for the solu-

tion of this problem.

This problem was chosen for detailed study because the existence of an exact

solution allows precise evaluation of the accuracy of the numerical solution

and, in particular, the effects of time step size and boundary mesh refine-

ment. Figure 3.4-16 compares the results of a BEST3D analysis, using Mesh 1

and a time step of 0.00035 second, with the analytical solution. The boundary

element method (BEM) results show good qualitative agreement with the exact

solution, but underestimate the peak deflection by about 12 percent, due pri-

marily to an overly crude boundary mesh. This is demonstrated in Figure 3.4-

17, where the dynamic magnification factors (transient/steady state displace-

ment) for the exact and numerical results are compared and quite good agree-

ment is apparent.
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The question of sensitivity to time step size is always of importance tn

transient analysis. Mesh 1 was also used to examine this question by calcu-

lating the solution for a variety of step sizes (0.0002 second to 0.0007

second). The results show almost no sensitivity to step size.

Based on the experience with Mesh I, it was concluded that a more refined sur-

face mesh, capable of giving a more accurate result for the static problem,

would also be suitable for the transient analysis. Mesh 2 and Mesh 3 were used

to confirm this, although only tile results for Mesh 3 are presented in the re-

port. The dynamic magnification factors obtained with Mesh 3 are slightly im-

proved relative to Mesh 1. The absolute displacement - time response, however,

is dramatically improved (Figure 3.4-18).
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A numberof two-dimensional test problems were solved in order to validate the

algorithm designed for natural frequency and mode shape calculations in

BEST3D. One of these problems, which was also solved using the MHOST finite

element code, is described below.

The first four bending modes for a cantilever beam were calculated using both

a two-dimensional BEM code and the I_OST finite element code. The beam has a

length of 6.5 units and a square (lxl) cross section. The meshes used for the

two analyses were very similar, with fourteen nodes along the beam length for

the finite element model and thirteen for the BEM model. The calculated eigen-

values agree well.

Natural Frequencies (Hz) of Cantilever

Mode 2-D BEM MHOST

1st bending 0.368 0.378

2rid bending 2.214 2.188
3rd bending 5.591 5.583

4th bending 9.986 9.908

Further, the mode shapes calculated using the two techniques are indistin-

guishable. The first and fourth modes are shown in Figure 3.4-19. It should be

noted that the fourth mode displays a nonzero slope at the fixed end. This is

a real feature of the two-dimensional solution which is not present in a beam

theory analysis, since it is suppressed by the fixed end boundary conditions

normally used in beam theory.
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3.4.5.7 Inelastic Analysis of the Benchmark Notch Specimen

The Benchmark Notch Specimen is a double edge notch specimen developed by

General Electric/Louisiana State University (GE/LSU) under NASA-Lewis Contract

NAS3-22522. A significant volume of well documented data was provided as part

of the contract report (Reference 12). These data were used during Task IC to

verify the elastic capabilities of BEST3D. During Task II, the inelastic data

from this program have been used to verify the nonlinear capabilities of both

BEST3D and MHOST.

The specimen geometry is defined in Figure 3.4-20. Stress analysis was carried

out for the gage section only, a procedure already known to be satisfactory.

The specimen models used are shown in Figure 3.4-21 (for BEST3D) and Figure

3.4-22 (for MHOST). In both cases it was found that selective mesh refinement

and weighting of elements toward the notch were required in order to obtain

acceptable accuracy with reasonable computing times. It should be especially

noted that the MHOST models use eight node elements. This means that the MHOST

"fine mesh" and "intermediate mesh 2" provide the same through-thickness dis-

placement variation as the quadratic BEST3D elements. This refinement was

needed to obtain accurate finite element results.

In Figures 3.4-23 and 3.4-24, the calculated strains at the notch root are

compared to a regression fit to the GE/LSU data. It is clear that, with an

appropriate choice of mesh, both BEST3D and MHOST accurately predict the

measured strains.

In addition to the monotonic loading results discussed above, the cyclic

plasticity model in BEST3D was used to predict specimen response over a more

complex loading sequence (no load --> max load --> min load --> max load). The

results of the cyclic calculation for Test 7 are shown in Figure 3.4-25.

Again, excellent agreement with the GE/LSU data was obtained.
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BENCHMARK NOTCH - FIRST CYCLE RESPONSE
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Figure 3.4-25 Benchmark Notch - First Cycle Response

3.4.5.8 Component Analysis

Further elastic analysis has been done for the turbine blade (Figure 3.4-26)

originally discussed in the First Annual Status Report (NASA CR-174700). The

blade was analyzed under centrifugal load using both BEST3D and MARC (three-

dimensional finite element). The evaluation of the results was greatly sim-

plified through the use of an in-house program providing (color) deflected

shape and iso-stress plots. It is a relatively straightforward task to link

BEST3D to such a tool.

In Task IC the intent of the turbine blade analysis was primarily to verify

the correct operation of the code for this highly complex problem. The intent

in Task IIC was to verify BEST3D's ability to calculate correctly the peak

stress in the blade and determine the degree, if any, of mesh refinement

needed for this calculation.
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Figure 3.4-26 BEST3D Model of Cooled High-Pressure Turbtne Blade

A fully linear BEST3D analysis correctly predicted the peak stress location

and gave a peak (maximum principal) stress of 146 ksi, significantly lower

than the MARC result of 169 ksi. Experience with other problems indicated that

the use of limited quadratic variation near the peak stress location should

lead to considerable improvement with a very limited increase in computing

cost.
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eighteen quadratic elements. The extent of quadratic variation is indicated in

Figure 3.4-27. This led to an increase in the peak stress to 174 ksi, in ex-

cellent agreement with the MARC result (which is calculated at an element in-

tegration point somewhat below the surface). The increase in computer time was

only 7 percent, i.e., from 890 to 952 central processing unit (CPU) seconds.

By comparison the MARC analysis required over 2700 CPU seconds to obtain

equivalent results.

SUBREGION
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Qt//_L_TIC
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Figure 3.4-27 Extent of Quadratic Variation Used in BEST3D Turbine Blade

Analysis
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